6
1222
£¨2£©ÓÉÓàÏÒ¶¨ÀíµÃc£½a£«b£2abcosC£½1£«9£2¡Á1¡Á3¡Á£½7£¬
2¹Êc£½7£¬ 11ÓÉS£½absinC£½ch 22absinC321µÃh£½£½£®
c1420£®½â£º
1
£¨1£©£x£½(2£«4£«6£«8£«10)£½6£¬
51£y£½(16£«13£«9.5£«7£«5)£½10.1£¬ 5
5i£½1
¡Æx£½220£¬¡Æxiyi£½247£®
i£½1
5
2i
5
¡Æxiyi£5¡¤-x-y
i£½1?b£½5£½£1.4£¬
22-¡Æxi£5x
i£½1
?-?£½-ay£bx£½18.5£®
ËùÇ󻨹éÖ±Ïß·½³ÌΪ£º?y£½£1.4x£«18.5£® £¨2£©ÓÉÌâ¿ÉÖª£¬
Q£½£1.4x£«18.5£(0.05x£1.8x£«17.5) £½£0.05x£«0.4x£«1 £½£0.05(x£4)£«1.8£¬
¹ÊÔ¤²âµ±x£½4ʱ£¬ÏúÊÛÀûÈóQÈ¡µÃ×î´óÖµ£® 21£®½â£º
ÓÅÖÊÎĵµ
2
2
2
£¨1£©¡ß2Sn£«3£½3an£¬ ¢Ù ¡à2Sn£1£«3£½3an£1£¬ (n¡Ý2)
¢Ú
¢Ù£¢ÚµÃ2Sn£2Sn£1£½3an£3an£1£½2an£¬ Ôò
an
a£½3 (n¡Ý2)£¬ n£1
ÔÚ¢ÙʽÖУ¬Áîn£½1£¬µÃa1£½3£®
¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ3£¬¹«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ ¡àan
n£½3£®
£¨2£©bn
n+2
n
n£½an¡¤log3an+2£½3¡¤log33£½(n+2)¡¤3£® ËùÒÔT1
2
3
n£1
n£½3¡¤3£«4¡¤3£«5¡¤3£«¡£«(n+1)¡¤3£«(n+2)¡¤3n
£¬
Ôò 3T2
3
n£1
n£½ 3¡¤3£«4¡¤3£«¡£«n¡¤3£«(n+1)¡¤3n
£«(n+2)¡¤3n+1
£¬¢Ù£¢ÚµÃ£¬
£2T2
3
n£1
n£½9£«1 (3£«3£«¡£«3£«3n)£(n+2)¡¤3n+1
£¬
n+1
£½9£«9£31£3£(n+2)¡¤3n+1
£½92n£«3n+12£2¡Á3£® ËùÒÔT2n£«3n+19n£½4¡Á3£4£®
22£®½â£º
£¨1£©¡ßDC¡ÎAB£¬AB£½BC£¬¡à¡ÏACD£½¡ÏCAB£½¡ÏACB£® ÔÚ¡÷ACDÖУ¬¼ÇDC£½AC£½t£¬ÓÉÓàÏÒ¶¨ÀíµÃ 2
2
2
2
cos¡ÏACD£½DC£«AC£AD2DC¡¤AC£½2t£1
2t
2£®
2
2
2
ÔÚ¡÷ACBÖУ¬cos¡ÏACB£½AC£«BC£AB t
2AC¡¤BC£½2
£®
2
ÓÉ2t£1 t 2t2£½
2
µÃt3£2t2£«1£½0£¬¼´(t£1)(t2
£t£1)£½0£¬ ÓÅÖÊÎĵµ
ÓÅÖÊÎĵµ
¢Ù
¢Ú
ÓÅÖÊÎĵµ
1¡À5
½âµÃt£½1£¬»òt£½£®
2
¡ß t£½1ÓëÌÝÐÎì¶Ü£¬ÉáÈ¥£¬ÓÖt>0£¬ 1£«51£«5
¡à t£½£¬¼´DC£½£®
22
£¨2£©ÓÉ£¨1£©Öª¡ÏCAD£½¡ÏADC£½¡ÏBCD£½2¡ÏACD£® ¹Ê5¡ÏACD£½180¡ã£¬¡ÏACD£½¡ÏACB£½36¡ã£¬ ¹Ê¡ÏDPC£½3¡ÏACB£½108¡ã£®
ÔÚ¡÷DPCÖУ¬ÓÉÓàÏÒ¶¨ÀíµÃDC£½DP£«CP£2DP¡¤CPcos¡ÏDPC£¬ ¼´t£½DP£«CP£2DP¡¤CPcos108¡ã £½(DP£«CP)£2DP¡¤CP(1£«cos108¡ã) £½(DP£«CP)£4DP¡¤CPcos54¡ã
¡ß4DP¡¤CP¡Ü(DP£«CP)£¬(µ±ÇÒ½öµ±DP£½CPʱ£¬µÈºÅ³ÉÁ¢£®) ¡àt¡Ý(DP£«CP)(1£cos54¡ã) £½(DP£«CP) sin54¡ã £½(DP£«CP) cos36¡ã t
£½(DP£«CP)¡¤
4
2
2
2
2
2
2
2
2
22
2
2
2
2
2
2
2
2
2
¡à(DP£«CP)¡Ü4£¬DP£«CP¡Ü2£®
¹Êµ±DP£½CP£½1ʱ£¬DP£«CPÈ¡µÃ×î´óÖµ2£®
2
ÓÅÖÊÎĵµ