.
【分析】(Ⅰ)取B1D1中点G,连结A1G、CG,推导出A1GOC,从而四边形OCGA1是平行四边形,进而A1O∥CG,由此能证明A1O∥平面B1CD1. (Ⅱ)推导出BD⊥A1E,AO⊥BD,EM⊥BD,从而BD⊥平面A1EM,再由BD∥B1D1,得B1D1⊥平面A1EM,由此能证明平面A1EM⊥平面B1CD1. 【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG, ∵四边形ABCD为正方形,O为AC与BD 的交点,
∴四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,A1GOC, ∴四边形OCGA1是平行四边形,∴A1O∥CG, ∵A1O?平面B1CD1,CG?平面B1CD1, ∴A1O∥平面B1CD1.
(Ⅱ)四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,BDB1D1, ∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD, 又BD?平面ABCD,∴BD⊥A1E,
∵四边形ABCD为正方形,O为AC与BD 的交点, ∴AO⊥BD,
∵M是OD的中点,E为AD的中点,∴EM⊥BD, ∵A1E∩EM=E,∴BD⊥平面A1EM, ∵BD∥B1D1,∴B1D1⊥平面A1EM, ∵B1D1?平面B1CD1,
.
.
∴平面A1EM⊥平面B1CD1.
【点评】本题考查线面平行的证明,考查面面垂直的证明,涉及到空间中线线、线面、面面间的位置关系等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
19.(12分)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3. (1)求数列{an}通项公式;
(2){bn} 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn.
【分析】(1)通过首项和公比,联立a1+a2=6、a1a2=a3,可求出a1=q=2,进而利用等比数列的通项公式可得结论;
(2)利用等差数列的性质可知S2n+1=(2n+1)bn+1,结合S2n+1=bnbn+1可知bn=2n+1,进而可知=,利用错位相减法计算即得结论. 【解答】解:(1)记正项等比数列{an}的公比为q, 因为a1+a2=6,a1a2=a3, 所以(1+q)a1=6,q=q2a1, 解得:a1=q=2, 所以an=2n;
(2)因为{bn} 为各项非零的等差数列,
.
.
所以S2n+1=(2n+1)bn+1, 又因为S2n+1=bnbn+1, 所以bn=2n+1,=,
所以Tn=3?+5?+…+(2n+1)?,
Tn=3?+5?+…+(2n﹣1)?+(2n+1)?, 两式相减得:Tn=3?+2(++…+)﹣(2n+1)?, 即Tn=3?+(+++…+)﹣(2n+1)?,
即Tn=3+1++++…+)﹣(2n+1)?=3+﹣(2n+1)? =5﹣.
【点评】本题考查数列的通项及前n项和,考查等差数列的性质,考查错位相减法,注意解题方法的积累,属于中档题.
20.(13分)已知函数f(x)=x3﹣ax2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.
【分析】(1)根据导数的几何意义即可求出曲线y=f(x)在点(3,f(3))处的切线方程,
(2)先求导,再分类讨论即可求出函数的单调区间和极值 【解答】解:(1)当a=2时,f(x)=x3﹣x2, ∴f′(x)=x2﹣2x,
∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,
.
.
∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0 (2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx, ∴g′(x)=(x﹣a)(x﹣sinx), 令g′(x)=0,解得x=a,或x=0,
①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,
当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增, 当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减, ∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina 当x=0时,有极大值,极大值为g(0)=﹣a,
②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,
当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增, 当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减, ∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina 当x=0时,有极小值,极小值为g(0)=﹣a ③当a=0时,g′(x)=x(x+sinx),
当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增, 当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增, ∴g(x)在R上单调递增,无极值.
【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题
.
相关推荐: