就可以做出判断.
【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,
从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧, 所以可以得出答案为B. 故选:B
8.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是( ) A.(﹣2,1)
B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)
【考点】平行四边形的性质;坐标与图形性质.
【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标. 【解答】解:∵A(m,n),C(﹣m,﹣n), ∴点A和点C关于原点对称, ∵四边形ABCD是平行四边形, ∴D和B关于原点对称, ∵B(2,﹣1),
∴点D的坐标是(﹣2,1). 故选:A.
9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是重合),连接OP,设∠POB=α,则点P的坐标是( )
上一点(不与A,B
A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα) 【考点】解直角三角形;坐标与图形性质.
【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.
9
【解答】解:过P作PQ⊥OB,交OB于点Q, 在Rt△OPQ中,OP=1,∠POQ=α, ∴sinα=
,cosα=
,即PQ=sinα,OQ=cosα,
则P的坐标为(cosα,sinα), 故选C.
10.下表是某校合唱团成员的年龄分布
年龄/岁 频数 13 5 14 15 15 x 16 10﹣x 对于不同的x,下列关于年龄的统计量不会发生改变的是( ) A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.中位数、方差
【考点】统计量的选择;频数(率)分布表.
【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10, 则总人数为:5+15+10=30,
故该组数据的众数为14岁,中位数为:
=14岁,
即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B.
11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是( )
10
A. B. C. D.
【考点】坐标确定位置;函数的图象.
【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案. 【解答】解:∵点A(﹣1,m),B(1,m), ∴A与B关于y轴对称,故A,B错误; ∵B(1,m),C(2,m+1),
∴当x>0时,y随x的增大而增大,故C正确,D错误. 故选C.
12.下列选项中,能使关于x的一元二次方程ax﹣4x+c=0一定有实数根的是( ) A.a>0 B.a=0 C.c>0 D.c=0 【考点】根的判别式.
【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可. 【解答】解:∵一元二次方程有实数根, ∴△=(﹣4)﹣4ac=16﹣4ac≥0,且a≠0, ∴ac≤4,且a≠0;
A、若a>0,当a=1、c=5时,ac=5>4,此选项错误; B、a=0不符合一元二次方程的定义,此选项错误; C、若c>0,当a=1、c=5时,ac=5>4,此选项错误; D、若c=0,则ac=0≤4,此选项正确; 故选:D.
13.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
2
2
11
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点. 其中正确结论的个数是( )
A.0 B.1 C.2 D.3
【考点】反比例函数的图象;反比例函数的性质. 【分析】①由反比例系数的几何意义可得答案;
②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知; ③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.
【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;
②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;
③连接OM,点A是MC的中点,
则△OAM和△OAC的面积相等,
∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等, ∴△OBM与△OAM的面积相等, ∴△OBD和△OBM面积相等,
12
相关推荐: