【考点】矩形的性质;角平分线的性质.
【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD?tan∠DAM=
即可;
(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;
(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例
=
,得出当点N、
H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.
【解答】解:(1)由折叠性质得:△ANM≌△ADM, ∴∠MAN=∠DAM,
∵AN平分∠MAB,∠MAN=∠NAB, ∴∠DAM=∠MAN=∠NAB, ∵四边形ABCD是矩形, ∴∠DAB=90°, ∴∠DAM=30°,
∴DM=AD?tan∠DAM=3×tan30°=3×
=
;
(2)延长MN交AB延长线于点Q,如图1所示: ∵四边形ABCD是矩形, ∴AB∥DC, ∴∠DMA=∠MAQ,
由折叠性质得:△ANM≌△ADM, ∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1, ∴∠MAQ=∠AMQ,
21
∴MQ=AQ,
设NQ=x,则AQ=MQ=1+x, ∵∠ANM=90°, ∴∠ANQ=90°,
在Rt△ANQ中,由勾股定理得:AQ=AN+NQ, ∴(x+1)=3+x, 解得:x=4, ∴NQ=4,AQ=5, ∵AB=4,AQ=5,
∴S△NAB=S△NAQ=×AN?NQ=××3×4=
;
2
2
2
2
2
2
(3)过点A作AH⊥BF于点H,如图2所示: ∵四边形ABCD是矩形, ∴AB∥DC, ∴∠HBA=∠BFC, ∵∠AHB=∠BCF=90°, ∴△ABH∽△BFC, ∴
=
,
∵AH≤AN=3,AB=4,
∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示: 由折叠性质得:AD=AH, ∵AD=BC, ∴AH=BC,
在△ABH和△BFC中,∴△ABH≌△BFC(AAS), ∴CF=BH, 由勾股定理得:BH=∴CF=
,
==,
,
22
∴DF的最大值=DC﹣CF=4﹣.
23
百度文库是百度发布的供网友在线分享文档的平台。百度文库的文档由百度用户上传 ,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。网友可以在线阅读和下载这些文档。百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
本文档仅用于百度文库的上传使用。
24
相关推荐: