误差和分析数据的处理习题
1.指出在下列情况下,各会引起哪种误差?如果是系统误差,应该采用什么方法减免?
(1) 砝码被腐蚀;
(2) 天平的两臂不等长; (3) 容量瓶和移液管不配套;
(4) 试剂中含有微量的被测组分; (5) 天平的零点有微小变动;
(6) 读取滴定体积时最后一位数字估计不准; (7) 滴定时不慎从锥形瓶中溅出一滴溶液;
(8) 标定HCl溶液用的NaOH标准溶液中吸收了CO2。
答:(1)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。 (2)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。 (3)系统误差中的仪器误差。减免的方法:校准仪器或更换仪器。 (4)系统误差中的试剂误差。减免的方法:做空白实验。 (5)随机误差。
(6)系统误差中的操作误差。减免的方法:多读几次取平均值。 (7)过失误差。
(8)系统误差中的试剂误差。减免的方法:做空白实验。
2.如果分析天平的称量误差为±0.2mg,拟分别称取试样0.1g和1g左右,称量的相对误差各为多少?这些结果说明了什么问题?
解:因分析天平的称量误差为?0.2mg。故读数的绝对误差?a??0.0002g 根据?r??a?100%可得 ??0.0002g?r0.1g??100%??0.2%
0.1000g?0.0002g?100%??0.02% ?r1g?1.0000g 这说明,两物体称量的绝对误差相等,但他们的相对误差并不相同。也就是说,当被测定的量较大时,相对误差就比较小,测定的准确程度也就比较高。
3.滴定管的读数误差为±0.02mL。如果滴定中用去标准溶液的体积分别为2mL和20mL左右,读数的相对误差各是多少?从相对误差的大小说明了什么问题?
解:因滴定管的读数误差为?0.02mL,故读数的绝对误差?a??0.02mL 根据?r??a?100%可得 ??0.02mL?r2mL??100%??1%
2mL?0.02mL?100%??0.1% ?r20mL?20mL 这说明,量取两溶液的绝对误差相等,但他们的相对误差并不相同。也就是说,当被测定的量较大时,测量的相对误差较小,测定的准确程度也就较高。 4.下列数据各包括了几位有效数字?
(1)0.0330 (2) 10.030 (3) 0.01020 (4) 8.7×10-5 (5) pKa=4.74 (6) pH=10.00 答:(1)三位有效数字 (2)五位有效数字 (3)四位有效数字 (4) 两位有效数字
(5) 两位有效数字 (6)两位有效数字
5.将0.089g Mg2P2O7沉淀换算为MgO的质量,问计算时在下列换算因数(2MgO/Mg2P2O7)中取哪个数值较为合适:0.3623,0.362,0.36?计算结果应以几位有效数字报出。 答::0.36 应以两位有效数字报出。
6.用返滴定法测定软锰矿中MnO2的质量分数,其结果按下式进行计算:
?MnO20.80005?8.00?0.1000?10?3?)?86.942?126.07?100%
0.5000(问测定结果应以几位有效数字报出? 答::应以四位有效数字报出。
7.用加热挥发法测定BaCl2·2H2O中结晶水的质量分数时,使用万分之一的分析天平称样0.5000g,问测定结果应以几位有效数字报出?
答::应以四位有效数字报出。
8.两位分析者同时测定某一试样中硫的质量分数,称取试样均为3.5g,分别报告结果如下:
甲:0.042%,0.041%;乙:0.04099%,0.04201%。问哪一份报告是合理的,为什么?
答::甲的报告合理。因为在称样时取了两位有效数字,所以计算结果应和称样时相同,都取两位有效数字。 9.标定浓度约为0.1mol·L-1的NaOH,欲消耗NaOH溶液20mL左右,应称取基准物质H2C2O4·2H2O多少克?其称量的相对误差能否达到0. 1%?若不能,可以用什么方法予以改善?若改用邻苯二甲酸氢钾为基准物,结果又如何?
解:根据方程2NaOH+H2C2O4·H2O==Na2C2O4+3H2O可知,
需H2C2O4·H2O的质量m1为:
0.1?0.020?126.07?0.13g 20.0002g?100%?0.15% 相对误差为 ?r1?0.13g m1? 则相对误差大于0.1% ,不能用H2C2O4·H2O标定0.1mol·L-1的NaOH ,可以选用相对分子质量大的作为基准物来标定。
若改用KHC8H4O4为基准物时,则有:
KHC8H4O4+ NaOH== KNaC8H4O4+H2O 需KHC8H4O4的质量为m2 ,则 m2? ?r20.1?0.020?204.22?0.41g 20.0002g??100%?0.049%
0.41g 相对误差小于0.1% ,可以用于标定NaOH。
10.有两位学生使用相同的分析仪器标定某溶液的浓度(mol·L-1),结果如下:
甲:0.12,0.12,0.12(相对平均偏差0.00%);
乙:0.1243,0.1237,0.1240(相对平均偏差0.16%)。 你如何评价他们的实验结果的准确度和精密度?
答:乙的准确度和精密度都高。因为从两人的数据可知,他们是用分析天平取样。所以有效数字应取四位,而甲只取了两位。因此从表面上看甲的精密度高,但从分析结果的精密度考虑,应该是乙的实验结果的准确度和精密度都高。
11.当置信度为0.95时,测得Al2O3的μ置信区间为(35.21±0.10)%,其意义是( )
A. 在所测定的数据中有95%在此区间内;
B. 若再进行测定,将有95%的数据落入此区间内; C. 总体平均值μ落入此区间的概率为0.95; D. 在此区间内包含μ值的概率为0.95; 答:D
12. 衡量样本平均值的离散程度时,应采用( )
A. 标准偏差 B. 相对标准偏差 C. 极差
D. 平均值的标准偏差 答:D
13. 某人测定一个试样结果应为30.68%,相对标准偏差为0.5%。后来发现计算公式的分子误乘以2,因此正确的结果
应为15.34%,问正确的相对标准偏差应为多少? 解:根据
Sr1?Sx??100%
S?100% 则S=0.1534%
30.68%S0.1534% 当正确结果为15.34%时, Sr2???100%??100%?1.0%
15.34%x 得 0.5%?14. 测定某铜矿试样,其中铜的质量分数为24.87%。24.93%和24.69%。真值为25.06%,计算:(1)测定结果的平均
值;(2)中位值;(3)绝对误差;(4)相对误差。 解:(1)x??24.87%?24.93%?24.69%?24.83%
3?(2)24.87%
(3)?a?x?T?24.83%?25.06%??0.23%
Ea?100%??0.92% T15. 测定铁矿石中铁的质量分数(以WFe2O3表示),5次结果分别为:67.48%,67.37%,67.47%,67.43%和67.40%。
(4)Er?计算:(1)平均偏差(2)相对平均偏差 (3)标准偏差;(4)相对标准偏差;(5)极差。 解:(1)x?67.48%?67.37%?67.47%?67.43%?67.40%?67.43%
5?10.05%?0.06%?0.04%?0.03%?0.04% d??|di|?n5?(2)dr??d0.04%?100%??100%?0.06% x67.43%?(0.05%)2?(0.06%)2?(0.04%)2?(0.03%)2??0.05% (3)S?n?15?1S0.05%(4)Sr???100%??100%?0.07%
67.43%x(5)Xm=X大-X小=67.48%-67.37%=0.11%
16. 某铁矿石中铁的质量分数为39.19%,若甲的测定结果(%)是:39.12,39.15,39.18;乙的测定结果(%)
为:39.19,39.24,39.28。试比较甲乙两人测定结果的准确度和精密度(精密度以标准偏差和相对标准偏差表示之)。 解:甲:x1???di2x39.12%?39.15%?39.18%?39.15% ?n?3? ?a1?x?T?39.15%?39.19%??0.04%
(0.03%)2?(0.03%)2??0.03% S1?n?13?1S10.03%?100%?0.08% Sr1???100%?39.15%xi?d2 乙:x2??39.19%?39.24%?39.28%?39.24%
3? ?a2?x?39.24%?39.19%?0.05%
(0.05%)2?(0.04%)2??0.05% S2?n?13?1S0.05%?100%?0.13% Sr2??2?100%?39.24%xi?d22 由上面|Ea1|<|Ea2|可知甲的准确度比乙高。 S1 综上所述,甲测定结果的准确度和精密度均比乙高。 2 17. 现有一组平行测定值,符合正态分布(μ=20.40,σ=0.042)。计算:(1)x=20.30和x=20.46时的u值;(2) 测定值在20.30 -20.46区间出现的概率。 解:(1)根据u? u1= x???得 20.30?20.4020.46?20.40??2.5 u2??1.5 0.040.04(2)u1=-2.5 u2=1.5 . 由表3—1查得相应的概率为0.4938,0.4332 则 P(20.30≤x≤20.46)=0.4938+0.4332=0.9270 18. 已知某金矿中金含量的标准值为12.2g?t-1(克·吨-1),δ=0.2,求测定结果大于11.6的概率。 解: u? 查表3-1,P=0.4987 故,测定结果大于11.6g·t-1的概率为: 0.4987+0.5000=0.9987 19. 对某标样中铜的质量分数(%)进行了150次测定,已知测定结果符合正态分布N(43.15,0.232)。求测定 结果大于43.59%时可能出现的次数。 解: u?x??11.6?12.2??3 = ?0.2x???= 43.59?43.15?1.9 0.23 查表3-1,P=0.4713 故在150次测定中大于43.59%出现的概率为: 0.5000-0.4713=0.0287 4 因此可能出现的次数为 150?0.0287?(次) 20. 测定钢中铬的质量分数,5次测定结果的平均值为1.13%,标准偏差为0.022%。计算:(1)平均值的标准偏 差;(2)μ的置信区间;(3)如使μ的置信区间为1.13% ±0.01%,问至少应平行测定多少次?置信度均为0.95。 解:(1) ???x?n?0.022%5?0.01% ? (2)已知P=0.95时,u??1.96,根据 ??x?u?? x 得??1.13%?1.96?0.01%?1.13%?0.02% 钢中铬的质量分数的置信区间为1.13%?0.02% (3)根据??x?tp,fs??x?tp,fx??sn 得x????tp,f?sn??0.01% tn?0.01%?0.5 0.022%2.0921?0.5 已知s?0.022% , 故 查表3-2得知,当f?n?1?20 时,t0.95,20?2.09 此时 即至少应平行测定21次,才能满足题中的要求。 21. 测定试样中蛋白质的质量分数(%),5次测定结果的平均值为:34.92,35.11,35.01,35.19和34.98。(1)经统计处理后的测定结果应如何表示(报告n,x和s)?(2)计算P=0.95时μ的置信区间。 解:(1)n=5 x???x34.92%?35.11%?35.01%?35.19%?34.98%??35.04% n52is??d0.122?0.072?0.032?0.152?0.062??0.11% n?15?1?经统计处理后的测定结果应表示为:n=5, x?35.04%, s=0.11% (2)x?35.04%, s=0.11% 查表t0.95,4=2.78 ?
相关推荐: