北师大版初中数学知识点梳理
北师大版初中数学知识点梳理,按照中考一轮复习的顺序整理的,知识点很全面,适合所有采用北师大版教材的地区,稍作改动后,也可适用于人教版或其他版本教材的地区。 供大家参考学习!
第一章 实数
考点一、实数的概念及分类 (3分)
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数
无理数 无限不循环小数 负无理数 2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等
考点二、实数的倒数、相反数和绝对值 (3分)
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 (3—10分)
1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a的平方根记做“?2、算术平方根
π+8等; 3a”。
第1页
正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a?0) 2a?a? ;注意a的双重非负性: -a(a<0) 3、立方根
a?0 如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
3?a??a注意:3,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分)
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
?a?10把一个数写做?a?10的形式,其中1,n是整数,这种记数法叫做科学记数法。
n考点五、实数大小的比较 (3分)
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,
a?b?0?a?b, a?b?0?a?b,
a?b?0?a?b
aaa1?a?b;?1?a?b;?1?a?b;(3)求商比较法:设a、b是两正实数,? bbb(4)绝对值比较法:设a、b是两负实数,则a?ba?b。
?b?a?b(5)平方法:设a、b是两负实数,则a。
考点六、实数的运算 (做题的基础,分值相当大)
22?b?b?a1、加法交换律 a
第2页
2、加法结合律
(a?b)?c?a?(b?c)
3、乘法交换律 ab?ba 4、乘法结合律 5、乘法对加法的分配律 6、实数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(ab)c?a(bc) a(b?c)?ab?a
第二章 代数式
考点一、整式的有关概念 (3分)
1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
2、单项式
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如
113?4a2b,这种表示就是错误的,应写成?a2b。一个单项式中,所有字母的指数的和叫做
33这个单项式的次数。如?5abc是6次单项式。 考点二、多项式 (11分)
1、多项式
几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 (2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。 2、同类项
所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 3、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。 (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
32第3页
4、整式的运算法则
整式的加减法:(1)去括号;(2)合并同类项。
mnm?n?a?a(m,n都是)整式的乘法:a
n(,)
nnn(ab)?ab(n都是正) 22(a?b)(a?b)?a?b 222(a?b)?a?2ab?b 222(a?b)?a?2ab?b mnm?n?a?a(m,n都是正整数,a?0)整式的除法:a
注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意
单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。
10?pa?1(a?0);a?(a?0,p为正整)(6) pa(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商
相加,单项式除以多项式是不能这么计算的。 考点三、因式分解 (11分)
1、因式分解
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
2、因式分解的常用方法
?ac?a(b?c)(1)提公因式法:ab
(2)运用公式法:
222a?2ab?b?(a?b) 222a?2ab?b?(a?b) ?ad?bc?bd?a(c?d)?b(c?d)?(a?b)(c?d)(3)分组分解法:ac
第4页
相关推荐: