如图(a)所示的凸轮机构推杆的速度曲线由五段直线组成。要求:在题图上画岀推杆的位移 曲线、加速度曲线;判断哪几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的 凸轮与推杆之间有无惯性力作用,有无冲击存在
F位置,
【分析】要正确地根据位移曲线、速度曲线和加速度曲线中的一个画岀其余的两个,必须对 常见四推杆的运动规律熟悉。至于判断有无冲击以及冲击的类型,关键要看速度和加速度有无突 变。若速度突变处加速度无穷大,则有刚性冲击;若加速度的突变为有限值,则为柔性冲击。
解:由图(a)可知,在OA段内(0 <5^2),/因推杆的速度v=0,故此段为推杆的近休段,推杆的 位移及加速度均为零。在 AB段内(n/2
3\因)v>0,故为推杆的推程段。且在 AB段内,因速
度线图为上升的斜直线,故推杆先等加速上升,位移曲线为抛物线运动曲线,而加速度曲线为正 的水平直线段;在 BC段内,因速度曲线为水平直线段,故推杆继续等速上升,位移曲线为上升 的斜直线,而加速度曲线为与
5轴重合的线段;在 CD段内,因速度线为下降的斜直线,故推杆
DE段内(3 n/2 <5<2n)
继续等减速上升,位移曲线为抛物线,而加速度曲线为负的水平线段。在
因v<0,故为推杆的回程段,因速度曲线为水平线段,故推杆做等速下降运动。其位移曲线为下 降的斜直线,而加速度曲线为与
穷大。综上所述作出推杆的速度
5轴重合的线段,且在 D和E处其加速度分别为负无穷大和正无 v及加速度a线图如图(b)及(c)所示。
D及E处,有速度突变,且相应的加速度分别为负无穷
由推杆速度曲线和加速度曲线知,在 大和正无穷大。故凸轮机构在
D和E处有刚性冲击。而在 A,B,C及D处加速度存在有限突变,
故在这几处凸轮机构有柔性冲击。
在F处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此, 击存在。
【评注】本例是针对推杆常用的四种运动规律的典型题。解题的关键是对常用运动规律的位 移、速度以及加速度线图熟练,特另U是要会作常用运动规律的位移、速度以及加速度线图。
对于图(a)所示的凸轮机构,要求: (1) 写岀该凸轮机构的名称; (2) 在图上标岀凸轮的合理转向。 (3) 画岀凸轮的基圆; (4) 的凸轮转角
(5) 画出推杆的行程H。
画岀从升程开始到图示位置时推杆的位移 S,相对应,B点的压力角
F处无冲
【分析】凸轮机构名称的命名,一般的顺序为推杆的运动形式 +推杆的形式+凸轮的形式;在
本题中,凸轮的合理转向系指使推程压力角较小的凸轮转向。当偏置与推程时凸轮和推杆的相对 速度瞬心位于凸轮轴心的同侧时,
凸轮机构的压力角较小。凸轮的基圆是指凸轮理论廓线的基圆,
所以应先求岀本凸轮的理论廓线;在求解图示位置时推杆的位移和相对应的凸轮转角,应先找到 推杆升程的起点。
解:(1)偏置直动滚子推杆盘形凸轮机构。
(2) 为使推程压力角较小,凸轮应该顺时针转动。
(3) 以0为圆心,以0B为半径画圆得理论廓线。连结 0A并延长交理论廓线于 Bo点,再以 转动中心A
为圆心,以ABo为半径画圆得基圆,其半径为 r°(见图(b))。
(3)
杆推程的起点,图示位置时推杆的位移和相应的凸轮转角分别为
(b),B点处的压力角 =0。
Bo点即为推
s,,见 图
(4)
圆的切线交基圆于 Ci点,因此 BiCi为行程H。
AO连线与凸轮理论廓线的另一交点为 Bi,过Bi作偏距
【评注】这是凸轮机构分析题目中一道基本题。题目中所涉及到的凸轮机构的名称、基圆、 压力角、位移等皆是基本概念,因此做此类题时,应对本章的概念掌握牢靠。另外,过
Bo,Bi点
作偏距圆的切线时,应注意此切线相对于 A点的位置。即在本题中,过Bi点作偏距圆的切线应在 A点的下方。
图(a)所示凸轮的廓线由三段圆弧(圆心分别在0、0'、0'点)及一段直线组成,推杆为圆心在 B点的一段圆弧构成的曲底摆动推杆。试用作图法求该凸轮机构的推程运动角
02
oi
、回程运动角
、推杆的最大摆角(行程)①,推杆在图示位置时的角位移
及压力角
、
及压力角
。以及凸轮从图示位置
再转过70°后推杆的角位移
图
【分析】要求出题目中所要求解的参数,必须先找出此凸轮机构的基圆和摆动推杆的初始位 置。题中的曲底推杆等效于一滚子推杆,滚子半径为
rr,滚子中心在B点。因此在解题时应先求
岀凸轮的理论廓线,再根据反转原理,求岀推杆在推程起始点、推程终止点、回程终止点及反转
70 °后推杆的位置,进而求出所要求解的各个参数。
解:以凸轮回转中心 O为圆心,以0A为半径画圆,此即摆动推杆的摆动中心在反转运动中 的轨迹圆B,见图(b)。
分别以0、O'、O'为圆心,以凸轮实际廓线中相应圆弧长加上滚子半径 理论廓线,见图(b)中细线轮廓。
0 0的延长线与理论轮廓的交点 Bo为推程廓线的最低点,以 Bo为圆心,以AB为半径画弧 与轨迹圆B
rr为半径做出凸轮的
的交点Ao为推程起始点时摆动推杆摆动中心的位置。
Bi为理论廓线的最高点,以 Bi为圆心,以AB为半径画弧与轨迹圆
00的延长线与理论廓线的交点
B的交点Ai为推程终止点时
摆动推杆摆动中心的位置。故 / Ao0Ai= 01即为推程运动角,见图(b)。
过0点作凸轮廓线直线部分的垂线, 其与理论廓线的交点 B2为回程的最低点。以B2为圆心, 以AB为半径画弧与轨迹圆 B的交点A2为回程终止时摆动推杆摆动中心的位置; 故/Ai0A2= 02即 为回程运动角,见图
(b)。
以Ai为圆心,以AB为半径画弧与基圆交于 Bi点,/ Bi0Bi'=<即为推程的角行程,见图(b)。 以A为圆心,以AB为半径画弧与基圆交于 B点,/ B 0B=为推杆在图示位置时的角位 移,见图(b)o
连线0 B为凸轮廓线在B点的法线(即正压力的方向线),过B点作AB的垂线即为推杆在B点 的速度方向线,两者之间的夹角
即为凸轮机构在图示位置时的压力角,见图
(b)o
70。得机架在反转
B'点和B
由于凸轮沿逆时针方向回转, 故从0A开始沿顺时针方向量给定的凸轮转角
运动中所占有的位置 A'、以A为圆心,以AB为半径画弧,分别与基圆和理论廓线交于 点,/ B'A' B'=为推杆在指定位置的角位移,过 两垂线间的夹角
B〃点作凸轮理论廓线的垂线和推杆 A' B勺垂线,
(b)o
即为此位置时凸轮机构的压力角,见图
【评注】对于滚子推杆盘形凸轮机构中的凸轮,其理论廓线和实际廓线为等距曲线,两条曲 线间的距离为滚子半径,据此可容易地作岀凸轮的理论廓线。凸轮上推程的起始点、推程的终止 点、回程的终止点等关键点均是在理论廓线上寻求,方法是找离凸轮转动中心最近和最远的点,
由于本题中凸轮廓线由直线和圆弧组成,所以这些关键点可利用已知的几何条件求得。然后根据 这些关键点以及凸轮与推杆的相对位置确定反转后推杆的位置和姿态。在作图时,要务必小心不 要将凸轮与推杆的相对位置弄错。
如图(a)所示的直动滚子推杆盘形凸轮机构中,已知推程运动角
o=12O°推杆做等加速等减
速运动,推杆的行程为h=25mm,等加速段的位移方程为s 2h 2/(2,等减速段为
s h 2h( 0
)2 / 0,凸轮实际轮廓的最小半径 「min=30mm,滚子半径r「=12mm,偏距e= 14mm。
试用解析法求:
(1) 凸轮基圆半径ro的值;
(2) 当凸轮转过90°时,推杆的位移量s和速度ds/d各为多大 (3) 当凸轮转过90°时,凸轮与推杆的瞬心位置。
(4) 求当凸轮转过90°时,所对应的凸轮理论廓线的对应点的坐标; (5) 求当凸轮转过90°时,所对应的凸轮实际廓线的对应点的坐标; (6) 求当凸轮转过90°时,凸轮机构所对应的压力角。
图
【分析】要求解本题,首先需要正确地根据反转法原理建立凸轮理论廓线和工作廓线的方程 式,然后按照解析法设计的一般步骤正确求解即可。
解:选取坐标系如图(b)所示,推杆滚子中心处 B0为起始位置,当凸轮转过
角时,推杆相应
的位移为s,再过B点作凸轮理论廓线的法线 nn,其与x轴的夹角 即是凸轮理论廓线的法线倾 角。法线nn与B点处的滚子交于点 B',即凸轮实际轮廓上的对应点。凸轮理论廓线
nn与过凸轮轴心0垂直于推杆导路的直线交于点
B点的法线
P12,即为凸轮与推杆的相对瞬心位置。推杆导
路与法线nn间的夹角即为凸轮机构所对应的压力角。
(1) 凸轮的基圆半径为 r°=rmin+rr=(30+12)mm=42mm
(2 )当=90°时,推杆处于推程减速段,故对应的推杆位移和速度为
lima = 21,875nitij
nmi/rutJ = 11.937mm/rad
(3)由图(b)可知,点P12的坐标方程式为
xP12 OP12sin( /2 yp12 OP12cos( /2
) )
OP12,所以OP12 vP12 /
ds/d 。当凸轮转过90°寸,凸轮与推
根据瞬心定义知: vP12 杆的瞬心位置的坐标为
XP12 yP12
0R2Sin( /2 OP12cos( /2
) 11.937cos( )
/2 /2)mm /2)mm
11.937mm 0mm
11.937sin( /2
(4) 由图(b)可知,凸轮理论廓线上 B点(即滚子中心)的直角坐标为
jt = ( J +
0- esin d
j + ijsin S + eccfe S
1 1
式中 s0 (r02 e2)2 (422 142)2mm 39.598mm,从而
x = ( 4 s )cub & —总sin(5 = - 14^iD ^O^mm = - I4mm
j = (io + a)sin S + ecw 3 = (39*598 + 2L875 Jain 9(Fimn *61.473mni
(5) 程式为
X x rr cos y' y rr sin
由图(b)可知,凸轮实际廓线的方程即 B'点的坐标方
因为
dy/d5 = (dj/d5 - t )sin S + ( Jo + s } cue S =(1L937 - 14)flin90 = 2.063
15
dfZd(? = (di/di - ?5 - (i(> + J) sin S 二-(39.598 + 2L 875)AinOO = -
2
61.473 [心“站尸 + (dy/d3)]i
? (( -61.473) + ( -2.063)l I =61.508
所以
sin
dx/d
(dx/d )2 (dy/d )2 dy/d
cos
(dx/d
)2 (dy/d )2
2
2
9
空 0.99943
61.508
輕 0.03354
61.508
rr cos
y' y
(14 12 ( 0.03354)) mm 13.598mm
49.480mm
rr sin
(61.473 12 0.99943)mm
(6) 由图(b)可知,该位置的压力角
为
\皿伽一.一或者 ■
dj/d<5 - e
眇隔“】眈\处
1L937- 14 .…
Jo + J
I ■ I. ■■■'r 一 <
【评注】这是一道典型的解析法设计和分析凸轮廓线的题目,解题的关键是根据反转法原理 建立凸轮理论廓线和工作廓线的方程式。因此扎实的数学功底是解题的保障。需要注意的是:在 解题过程中,所建立的坐标系不同,得到的计算方程和各坐标值是不同的。因此在解题中不能死 搬课本的公式,如本题中理论廓线坐标的计算公式、
sin及cos的计算公式就与课本不同,其
原因是坐标系不同,他们相差 90°,因此所得的计算公式就不同。
4.6.1学习效果测试题
9-1选择题,请将所选答案前方的字母填在题后的括号内。 (1) __ 盘形凸轮机构的压力角恒等于常数。
A.
()
摆动尖顶推杆 B.直动滚子推杆 。
(2) 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推
杆 相 比 , 两 者 在 推 程 段 最 大 压 力 角 的 关 系 为 _______________________________ ()
相关推荐: