2019年全国各地中考数学压轴题汇编(四川专版)
几何综合
参考答案与试题解析
1.(2019?成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E. (1)求证:
=
;
(2)若CE=1,EB=3,求⊙O的半径;
(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.
证明:(1)∵OC=OB ∴∠OBC=∠OCB ∵OC∥BD ∴∠OCB=∠CBD ∴∠OBC=∠CBD ∴
(2)连接AC,
∵CE=1,EB=3, ∴BC=4 ∵
∴∠CAD=∠ABC,且∠ACB=∠ACB
∴△ACE∽△BCA ∴
2
∴AC=CB?CE=4×1 ∴AC=2, ∵AB是直径 ∴∠ACB=90° ∴AB=∴⊙O的半径为
=2
(3)如图,过点O作OH⊥FQ于点H,连接OQ,
∵PC是⊙O切线,
∴∠PCO=90°,且∠ACB=90°
∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA ∴△APC∽△CPB ∴
2
∴PC=2PA,PC=PA?PB ∴4PA=PA×(PA+2∴PA=∴PO=∵PQ∥BC
∴∠CBA=∠BPQ,且∠PHO=∠ACB=90° ∴△PHO∽△BCA ∴
2
)
即
∴PH=∴HQ=
,OH=
=
∴PQ=PH+HQ=
2.(2019?自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G. ①线段DB和DG的数量关系是 DB=DG ; ②写出线段BE,BF和DB之间的数量关系.
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G. ①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
解:(1)①DB=DG,理由是:
∵∠DBE绕点B逆时针旋转90°,如图1,
由旋转可知,∠BDE=∠FDG,∠BDG=90°,
∵四边形ABCD是正方形, ∴∠CBD=45°, ∴∠G=45°, ∴∠G=∠CBD=45°, ∴DB=DG; 故答案为:DB=DG; ②BF+BE=
BD,理由如下:
由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG, ∴△FDG≌△EDB(ASA), ∴BE=FG,
∴BF+FG=BF+BE=BC+CG, Rt△DCG中,∵∠G=∠CDG=45°, ∴CD=CG=CB, ∵DG=BD=
BC,
BD;
BD,
即BF+BE=2BC=
(2)①如图2,BF+BE=
理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°, 由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG, 在△DBG中,∠G=180°﹣120°﹣30°=30°, ∴∠DBG=∠G=30°, ∴DB=DG,
∴△EDB≌△FDG(ASA), ∴BE=FG,
∴BF+BE=BF+FG=BG,
过点D作DM⊥BG于点M,如图2,
∵BD=DG,
相关推荐: