ÔÚ´Ë·½ÏòÉÏеĵü´úµãΪ£º
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
°Ñеĵü´úµã´øÈëÄ¿±êº¯Êý£¬Ä¿±êº¯Êý½«³ÉΪһ¸ö¹ØÓÚµ¥±äÁ¿´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£µÄº¯Êý´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
Áî ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬¿ÉÒÔÇó³öµ±Ç°ËÑË÷·½ÏòÉϵÄ×îÓŲ½³¤ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ еĵü´úµãΪ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
µ±Ç°ÌݶÈÏòÁ¿µÄ³¤¶È´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£, Òò´Ë¼ÌÐø½øÐеü´ú¡£ µÚÒ»µü´ú²½Íê³É¡£
2¡¢ÊÔÓÃÅ£¶Ù·¨Çóf( X )=(x1-2)2+(x1-2x2)2µÄ×îÓŽ⣬Éè³õʼµãx(0)=[2,1]T¡£ ½â1£º£¨×¢£ºÌâÄ¿³öÌâ²»µ±£¬³õʼµãÒѾÊÇ×îÓŵ㣬½â2ÊÇÐÞ¸ÄÌâÄ¿ºó½â·¨¡££© Å£¶Ù·¨µÄËÑË÷·½ÏòΪ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£,Òò´ËÊ×ÏÈÇó³öµ±Ç°µü´úµãx(0) µÄÌݶÈÏòÁ¿¡¢º£É«¾ØÕó¼°ÆäÄæ¾ØÕó
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ²»ÓÃËÑË÷£¬µ±Ç°µã¾ÍÊÇ×îÓŵ㡣
½â2£ºÉÏÊö½â·¨²»ÊǵäÐ͵ÄÅ£¶Ù·½·¨£¬ÔÒòÔÚÓÚÌâÄ¿µÄ³õʼµãÑ¡Ôñ²»µ±¡£ÒÔÏÂÐÞ¸ÄÇó½âÌâÄ¿µÄ³õʼµã£¬ÒÔÌåÏÖÅ£¶Ù·½·¨µÄµäÐͲ½Öè¡£
ÒÔ·Ç×îÓŵãx(0)=[1,2]T×÷Ϊ³õʼµã£¬ÖØÐ²ÉÓÃÅ£¶Ù·¨¼ÆËã
Å£¶Ù·¨µÄËÑË÷·½ÏòΪ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£,Òò´ËÊ×ÏÈÇó³öµ±Ç°µü´úµãx(0) µÄÌݶÈÏòÁ¿¡¢ÒÔ¼°º£É«¾ØÕó¼°ÆäÄæ¾ØÕó
ÌݶȺ¯Êý£º
³õʼµãÌݶÈÏòÁ¿£º
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ º£É«¾ØÕó£º
º£É«¾ØÕóÄæ¾ØÕó£º
µ±Ç°²½µÄËÑË÷·½ÏòΪ£º
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ еĵü´úµãλÓÚµ±Ç°µÄËÑË÷·½ÏòÉÏ £º
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ £½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
°Ñеĵü´úµã´øÈëÄ¿±êº¯Êý£¬Ä¿±êº¯Êý½«³ÉΪһ¸ö¹ØÓÚµ¥±äÁ¿´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£µÄº¯Êý´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
Áî ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££¬¿ÉÒÔÇó³öµ±Ç°ËÑË÷·½ÏòÉϵÄ×îÓŲ½³¤ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ еĵü´úµãΪ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
µ±Ç°ÌݶÈÏòÁ¿µÄ³¤¶È´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£, Òò´Ë¼ÌÐø½øÐеü´ú¡£ µÚ¶þµü´ú²½£º
Òò´Ë²»ÓüÌÐø¼ÆË㣬µÚÒ»²½µü´úÒѾµ½´ï×îÓŵ㡣
ÕâÕýÊÇÅ£¶Ù·¨µÄ¶þ´ÎÊÕÁ²ÐÔ¡£¶ÔÕý¶¨¶þ´Îº¯Êý£¬Å£¶Ù·¨Ò»²½¼´¿ÉÇó³ö×îÓŵ㡣
3¡¢ÉèÓк¯Êý f(X)=x12+2x22-2x1x2-4x1£¬ÊÔÀûÓü«ÖµÌõ¼þÇóÆä¼«ÖµµãºÍ¼«Öµ¡£ ½â£ºÊ×ÏÈÀûÓü«Öµ±ØÒªÌõ¼þ
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ÕÒ³ö¿ÉÄܵļ«Öµµã£º Áî
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
ÇóµÃ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£,ÊÇ¿ÉÄܵļ«Öµµã¡£
ÔÙÀûÓóä·ÖÌõ¼þ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£Õý¶¨£¨»ò¸º¶¨£©È·Èϼ«Öµµã¡£ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
Òò´Ë´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£Õý¶¨, ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ÊǼ«Ð¡µã£¬¼«ÖµÎªf(X*)=-8 4¡¢ÇóÄ¿±êº¯Êýf( X )=x12+x1x2+2x22 +4x1+6x2+10µÄ¼«ÖµºÍ¼«Öµµã¡£ ½â·¨Í¬ÉÏ
5¡¢ÊÔÖ¤Ã÷º¯Êý f( X )=2x12+5x22 +x32+2x3x2+2x3x1-6x2+3ÔÚµã[1£¬1£¬-2]T´¦¾ßÓм«Ð¡Öµ¡£ ½â£º ±ØÒªÌõ¼þ£º
½«µã[1£¬1£¬-2]T´øÈëÉÏʽ£¬¿ÉµÃ
³ä·ÖÌõ¼þ
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½40´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£Õý¶¨¡£
Òò´Ëº¯ÊýÔÚµã[1£¬1£¬-2]T´¦¾ßÓм«Ð¡Öµ
6¡¢¸ø¶¨Ô¼ÊøÓÅ»¯ÎÊÌâ
min f(X)=(x1-3)2+(x2-2)2 s.t. g1(X)=£x12£x22£«5¡Ý0 g2(X)=£x1£2x2£«4¡Ý0 g3(X)= x1¡Ý0 g4(X)=x2¡Ý0
]TKuhn-TuckerÌõ¼þ³ÉÁ¢¡£ ÑéÖ¤ÔÚµãX?[2£¬£±]TÆð×÷ÓÃÔ¼Êø£º ½â£ºÊ×ÏÈ£¬ÕÒ³öÔÚµãX?[2£¬£±g1(X) £½0 g2(X) £½0 g3(X) £½2 g4(X) £½1
Òò´ËÆð×÷ÓÃÔ¼ÊøÎªg1(X)¡¢g2(X)¡£
È»ºó£¬¼ÆËãÄ¿±êº¯Êý¡¢Æð×÷ÓÃÔ¼Êøº¯ÊýµÄÌݶȣ¬¼ì²éÄ¿±êº¯ÊýÌݶÈÊÇ·ñ¿ÉÒÔ±íʾΪÆð×÷ÓÃÔ¼Êøº¯ÊýÌݶȵķǸºÏßÐÔ×éºÏ¡£
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡££½´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£, ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ Çó½âÏßÐÔ×éºÏϵÊý ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
µÃµ½ ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ ¾ù´óÓÚ0
]TKuhn-TuckerÌõ¼þ³ÉÁ¢ Òò´ËÔÚµãX?[2£¬£±
7¡¢Éè·ÇÏßÐԹ滮ÎÊÌâ
2minf(X)?(x1?2)2?x2
s.t.g1(X)?x1?0g2(X)?x2?02g3(X)?x12?x2?1?0
ÓÃK-TÌõ¼þÑéÖ¤X*??1,0?ΪÆäÔ¼Êø×îÓŵ㡣
T½â·¨Í¬ÉÏ
8¡¢ÒÑ֪Ŀ±êº¯ÊýΪf(X)= x1+x2£¬ÊÜÔ¼ÊøÓÚ£º g1(X)=-x12+x2¡Ý0 g2(X)=x1¡Ý0 д³öÄڵ㷣º¯Êý¡£ ½â£º
Äڵ㷣º¯ÊýµÄÒ»°ã¹«Ê½Îª
ÆäÖУº r(1)>r(2) >r(3)¡ >r(k) ¡ >0 ÊÇÒ»¸öµÝ¼õµÄÕýÖµÊýÁÐ r(k)£½Cr(k-1)£¬ 0£¼C£¼1 Òò´Ë ·£º¯ÊýΪ£º
9¡¢ÒÑ֪Ŀ±êº¯ÊýΪf(X)=( x1-1)2+(x2+2)2 ÊÜÔ¼ÊøÓÚ£ºg1(X)=-x2-x1-1¡Ý0
g2(X)=2-x1-x2¡Ý0 g3(X)=x1¡Ý0 g4(X)=x2¡Ý0
Ïà¹ØÍÆ¼ö£º