因此P?(X=3)?69 ,P?(X=2)?35356122P?(X=6)?,P?(X=23)?,P?(X=33)?
353535所以随机变量的概率分布列为:
X P(X) 所求数学期望
3 2 9 356 23 33 6 356 3512 352 35E(X)?3?696122363?66?18?2??6??23??33?? 35353535353518.解:(1)当m?1时,记事件A:“所取子集的元素既有奇数又有偶数”. 则集合?1,2,3,4,5?的非空子集数为2?1?31,其中非空子集的元素全为
5奇数的子集数为2?1?7,全为偶数的子集数为2?1?3, 所以P(A)?3231?(7?3)21?
3131(2)当m?2时,?的所有可能取值为0,1,2,3,4
2222CC1?C1?C1?C1CCC2222则P(??0)?2C31?11022? 46593123345C5C5?C52C5?C5C5?C54C520541P(??1)??? 2C31465931335C5C5?C52C54?C5C511022P(??2)??? 2C3146593145C5C5?C52C5357 P(??3)???2C314659315C5C51P(??4)?25??
C3146593所以?的数学期望E(?)?1?4122411110?2??3??4?? 939393939319.解:(1)分别AB,AC,AA1以所在直线为x,y,z轴, 建立如图所示的空间直角坐标系A?BCA1, 设AA1?t,则A(0,0,0),C1(0,4,t)
B1(3,0,t),C(0,4,0)
所以AC1?(0,4,t),BC?(?3,4,?t),, 1因为B1C?AC1,所以AC1?BC?0, 1即16?t?0,解得t?4 所以AA1的长为4.
(2)因为BP?1,所以P(3,0,1), 又C(0,4,0),A1(0,0,4),
故AC?(0,4,?4),A1P?(3,0,?3) 12??4y?4z?0?n?A1C设n?(x,y,z)为平面PA1C的法向量,则?,即?
?3x?3z?0??n?A1P取z?1,解得y?1,x?1
∴n?(1,1,1)为平面PA1C的一个法向量, 显然,AB?(3,0,0)为平面A1CA的一个法向量 则cosn?AB?n?ABn?AB?33 31?1?13据图可知,二面角P?A1C?A大小的余弦值为
20.解:(1)由抛物线定义知,1?所以p?2,
p?2 2
将点T(1,t)(t?0)代入抛物线得y?4x,t?2
2y12y2(2)设A(,y1),B(,y2)
442①则直线TA的方程为:y?2?y1?2(x?1) y12?14(y2?2)(y2?2)(y?2)(y2?2)?1,所以D(2?1,y2)
44(y?2)(y1?2)同理D(1?1,y1)
4y2?y1y2?y1所以直线CD的斜率为???1(定值)
(y2?2)(y1?2)(y1?2)(y2?2)4(y1?y2)?444令y?y2得,x?②设点E,F的横坐标分别为xE,xF
(y1?2)(y2?2)?1
4(y?2)(y2?2)令y??2得,xF?2?y1?1?1
4由①知,直线CD的方程为:y?y1??x?又直线AB的方程为:y?y1?令y??2得,xE?x1?4(x?x1)
y1?y2(y1?2)(y1?y2)
4(y?2)(y1?y2)(y?2)(y2?2)x1?1?2?y1?1?1xE?xF44所以 ?224x1?y12?2y1?y1y2?2y2?8?4y1?y1y2?2y2?2y1?4?4?
84x1?y12?8?
8?1
所以T是线段EF的中点.
相关推荐: