第一范文网 - 专业文章范例文档资料分享平台

电子束原理

来源:用户分享 时间:2025/12/9 2:52:55 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

行比较,其差值经放大后给预放大管,以控制放大管的输出。在PI调节电路中还设置了调试给定电路,其目的是为了高压电源调试用。在试验时,给定信号由Rtest供给,调节Rp的值,高压输出即可由零到额定值调节,有利于焊接工艺试验和高压电源的参数调整。

高压电路

自动重加高压电路的原理是利用三极管的控制原理来实现对高压的快速截止和导通。它由运算放大器和三极管等电路组成。它的工作原理是当反馈信号超过给定信号时,比例放大器IC2的输出为高电平,V4导通,IC3输出低电平,V3导通,V2截止,封锁PI调节器的输出,从而关断高压调整管以切断高压。反之,当反馈信号小于给定时IC2输出低电平,V4截止,IC3输出高电平,V3截止,PI调节器正常工作,由于三极管从导通到截止,恢复时间很快,因此加在电子枪上高压在控制电路的作用下很快恢复正常工作状态而不停机,确保电子束焊机能够正常生产。

功率放大电路

功率放大电路由前级预放管VL33和功率放大管VL32组成,工作过程是V2在负电源的作用下,由PI调节器输入的调节量经V2放大后送到真空管VL33的控制极,阳极接到辅助电源的正极,阴极接地,控制极电压越高(负),VL33的阳极对地电压越高,高压调整管VL32的阳极电压越高,电子枪上的电压越低,相反时控制电路按以上相反的过程调节电子枪上的高压,最终实现电子枪上高压的稳定。

6技术指标编辑

高压电源应用到双金属锯带焊接生产线时,工作稳定,通过对电源技术指标的测量,具体参数如下:

额定加速电压:120kV,纹波系数<1%,稳定度<1%; 额定电子束流:50mA,纹波系数<1%,稳定度<1%。 电源在电子枪内打火时,高压电源能快速恢复而不停机。

在高压侧由高压真空管调节高压直流电源的输出,其输出特性好,纹波系数小,稳定度高。由于调整管隔离滤波电容器,电源在过压保护停机时,电容器上的能量不会泄放到工件上而导致工件的损坏。经在双金属锯带生产线上的实际运行,电源的各项技术指标均满足生产线的工艺要求。

7相关案例编辑

阀门阀体焊接

锻焊结构阀门阀体的结构特点

目前我国大型阀门阀体的生产一般采用铸件结构,不但工艺复杂,材料浪费,而且往往在铸件的内训产生疏松、缩孔等缺陷,不能满足质量要求。为了解决上述问题,一些厂家已逐步将阀门阀体的铸造结构改为锻焊结构,在焊接生产上主要采用氩弧焊、手工电弧焊或埋弧焊,劳动生产率低,接头质量受人为因素影响较大。图1为锻焊结构阀体示意图。

这些阀门阀体的壁厚一般在40-140mm之间,外形尽寸不超过750mmx750mmx850mm,因而选用电子束方法来进行焊接具有如下优点:

(1)产品本身尺寸并不十分巨大,因此不需要体积很大的真空室,这样右以使真空本身的制造成本降低,缩短了抽真空的时间。

(2)产品结构要求环缝隙中间位置有一开孔,安装法兰。对于电子束焊来说在始焊点和焊接结束点处最易产生焊接缺陷,而针对该产品的特点,可以把环缝的搭接点作为开孔位置,简化了焊接工艺。

2试验材料及设备

2.1 试验材料的化学成分及力学性能

本文采用材质为SA106B,规格为φ404mmx73mm的大口径钢管模拟锻焊闸阀的产品试样进行工艺评定。试验材料的化学成分及力学性能见表1。

2.2 试验设备

本试验采用的是乌克兰巴顿焊接研究所研制的KL105真空电子束焊机,其设备的主要性能参数见表2。

3模拟件的焊接

电子束焊接设备分为高压电源、真空设备、控制系统等几部分,设备复杂,造价高,使用及维护动技术要求高。因此对操作要求较严格,必须按照操作程序进行。

3.1焊前准备

(1)为防止钉尖缺陷的产生,电子束焊时往往要加衬垫,衬垫的材料应与产品的材料相同。衬垫的厚度应不小于被焊接工件厚度的30%,参数的选择应保证熔深比实际接头要求的焊接深度大20%。焊后采用机加的方法去除衬垫。

(2)为防止焊缝隙表面的金属外流,在破口的外侧还需加挡圈,待焊接结束后采用机加的方法去除。

(3)待焊工件的接缝区应精确加工并采用专用夹具进行装配和固定,焊接集团采用了横焊,焊接时工件固定,焊枪运动。

(4)焊缝表面的清理。由于电子束焊接过程中将金属加热成金属蒸气,与此同时焊缝表面的夹杂、油锈水等也被加热蒸气。在焊接过程中这些蒸气与金属蒸气将共同填满焊缝,这会形成气孔、夹渣等缺陷,降低焊接的质量。因此焊接前要冼焊接表面采用酒精和丙酮进行擦洗,防止留有铁锈、夹杂和水。对于真空电子工业束焊接设备,焊件表面的清理更加严格,否则不仅会导致焊缝缺陷及软科学性能劣化,而且影响抽气时间与焊枪运行稳定性,同时会加导师真空泵轴老化。

3.2焊前调试

(1)首先安装工件,通过控制系统将电子枪调整至待焊位置,使电子枪与待焊件保持一定的距离。我们称焊接过程中电子工业枪与工位之间的距离为工作距离。在整个焊接过程中,这一距离将保持不变。

(2)关闭真空室的大门,开始抽真空,当真空度达到规定数值0.667Pa即可进行焊接。电子束焊机的工作环境温度应控制在12-35℃之间,厂房应配有空气干燥系统以降低环境

(3)调整焊枪使之对准铜棒,在铜棒上测试最大电流。在焊接过程式中,电子工业束束流过小,会使发射电子束的阴极受损,通常在焊接前,要将电流加以测试。

(4)进行焊接起始点位置的调试。通过X,Y,Z方向位移来确定焊缝的位置。 3.3焊接参数

电子束焊接随着焊接参数的不同,所能焊接的壁厚也不同。通过大量的试验研究,所确定的适合于该产品的焊接参数见表3。

在该图中,纵坐标是焊接电流及聚焦电流(括号中标出),横坐标是电子枪的移动距离。各阶段分别为:阶段①是将程序调整至正常状态;阶段②是将电流调整到工作状态;阶段③是保持工作状态;阶段④是电流进行逐步衰减并进行焊缝隙的搭接。

3.4试验结果

焊接接头力学性能检验试验结果完全满足ASME及国内相应法规的要求。

双相不锈钢钎焊

目前新一代航天发动机中大量采用新材料及异种材料的连接结构,以充分发挥材料各自的性能优势及结构的特殊用途,从而保证发动机的整体性能。双相不锈钢具有优异的力学性能及耐全腐蚀性能,特别是具有良好的抗应力腐蚀能力,因此已广泛应用于石油、化工、原子能工程及航空航天发动机制造等领域[1]。而铬青铜是一种耐蚀性较好、热导率较高的材料,其中微量元素Cr的加入起到了细化晶粒、进一步提高强度的双重作用[2]。

铬青铜与双相不锈钢异种材料的有效组合同时满足了发动机推力室冷却及高强要求,从而涉及到铜—钢异种材料的焊接。针对电子束焊接具有能量密度高、加热速度快、焊接热影响区及变形小、参数稳定再现性好、易于控制及适于焊接难熔及异种金属等一系列的优点[3-5],本文对QCr0.8与1Cr21Ni5Ti进行了电子束焊接的试验研究,并对不同偏铜距离下束焊接而形成接头的显微组织状态及其力学性能进行了分析,其结果可为合理的制定QCr0.8与

1Cr21Ni5Ti焊接工艺,获得其优质连接提供理论和实验依据。

试验材料及方法

试验用铬青铜及双相不锈钢的化学成分及力学性能见表1。

试验用焊接设备为法国TECHMETA公司生产的MEDARD43型真空电子束焊机,焊机最大加速电压60KV,最大功率6kw,本实验所使用的阴极直径为Ф2.0。如图1所示,将清理好的铬青铜与双相不锈钢试件底面平齐沿长边对接放入焊机真空室工作台上的自制夹具中紧贴压靠,注意使其对接缝间隙最大不得超过0.25mm。然后在真空度为5.4×10-4mbr,加速电压HV=60KV,电子束束流Ib=45mA,焊接速度v=1m/min,表面聚焦状态下,改变电子束相对于对接接头中线向铬青铜侧的偏移值进行施焊。

图1 电子束焊对接接头示意图

采用日本进口的PMG3 OLYMPOS光学显微镜对焊后试样接头区进行显微组织分析。并在INSTRON MODEL1186电子万能试验机上进行接头拉伸试验。

试验结果与分析 2.1接头组织状态

QCr0.8与1Cr21Ni5Ti两种材料的熔点、热导率等热物理性能存在显著差异。通常纯Cu的热导率比纯Fe要大6~10倍,因此Cu侧的传热比Fe要快得多。这样,在偏铜值为0mm(即对中焊)时电子束作用于QCr0.8与1Cr21Ni5Ti对接接头母材两侧热量的分布极不均匀,这种相对于对接接头中线非对称温度场的形成将导致两侧母材熔化不均,1Cr21Ni5Ti的熔化量要大于QCr0.8,这对形成可靠熔焊接头不利。同时,考虑到在高能电子束作用下QCr0.8侧Cu元素烧损严重。为此,我们采用如图1所示的不等厚偏铜侧下束的接头形式以使焊缝两侧母材的热输入达到平衡,同时弥补了Cu烧损而引起的下塌焊缝形状。由图2(a)可见,偏铜值为0mm接头两侧母材均发生熔化,其焊缝组织宏观极不均匀,左上部的浅色组织区与中部及右上部的深色组织区有明显的分界线,结合Fe-Cu二元相图我们推断焊缝中部及近不锈钢侧的深色组织为α+ε相铸态混合组织;焊缝左上部近QCr0.8侧的浅色组织为Fe在Cu中的固溶体Cu(ss.Fe),内含少量离散分布的α+ε相。

此外,焊缝中α+ε两相组织的体积含量要大于Cu(ss.Fe) 相,说明在电子束对中焊接头中线两侧形成了非对称分布的温度场,从而导致两侧母材熔化不均。这种宏观组织和成分不均匀焊缝的形成缘于异种材料物理化学性能差异及电子束高能量密度,高效快速成缝的焊接特点。在对中焊时,两侧母材虽都有熔化参与熔池形成,但由于二者熔点、密度、原子活性及高温流动性的差异,在快速移动电子束深穿作用下两侧熔化母材金属尚未在液态无限互溶即开始结晶凝固,从而形成焊缝宏观组织的不均匀。在偏铜值为0.3mm时,如图2(b)所示,铬青铜侧熔化量明显增加,焊缝组织均匀化程度有所改善,焊缝为Cu(ss.Fe)与α+ε相混合组织,其中α+ε相不再聚集成大片的组织区,而是以小区块离散分布在焊缝中,在钢侧熔合线附近依然可见1Cr21Ni5Ti的明显熔化痕迹。如图2(c)所示,随着偏铜值的进一步增加,在偏铜值为0.8mm左右,可见焊缝组织基本上为全Cu(ss.Fe)相,接头区宏观组织不均匀现象完全消失。

a) 偏铜0mm(对中焊) b)偏铜0.3mm c) 偏铜0.8mm d)偏铜2.0mm 1Cr21Ni5Ti

图2 不同偏铜值接头中上部区域显微组织形貌

对该接头钢侧熔合线处的焊缝及热影响区的进一步观察(见图3)我们可以看出,在钢侧熔合线靠近试件上表面的很短的长度范围内,出现了一个熔合过渡区,结合其组织形态及Fe-Cu二元相图,我们分析认为其组织为Fe元素含量较高的α+ε相;在焊缝钢侧熔合线中下部1Cr21Ni5Ti母材未见熔化,而是与焊缝区形成了一薄的扩散过渡层。进一步增加电子束的偏移值,如图3(d)所示,只有铜侧母材熔化,而钢侧母材未熔合,从图中可见清晰的未焊合对接面。

a)钢侧熔合线上部 b)钢侧熔合线下部 图3 熔钎焊缝结合界面微观形貌(偏铜0.8mm)

综上所述,随着电子束距对接中线铜侧偏移量的增加,电子束在母材两侧形成的焊接温度场的分布也随之变化,焊缝组织逐渐均匀化。在偏铜值0.8-1.0mm范围内,接头呈熔钎焊缝结合特征。此时,铬青铜母材熔化,而钢侧母材几乎不熔,熔化的铬青铜母材作为钎料,与钢侧母材相联结。偏铜量超过2.0mm,则接头无法熔合。

2.2 接头力学性能

图4 电子束偏铜距离对接头强度的影响

为了考核不同偏铜距离对接接头的连接性能,我们进行了接头拉伸试验。由图4可见,随电子束距对接中线铜侧偏移值的增加,QCr0.8/1Cr21Ni5Ti电子束焊接接头的强度呈近抛物线变化规律。在偏移值为0mm(即对中焊)时,接头拉伸强度很低,由上述组织分析可知,这主要是对中焊接头的焊缝组织及成分的宏观极不均匀分布造成的。随偏移值的增加,接头组织及成分逐渐均匀化,直至偏移值达0.8-1.0mm时,接头强度出现峰值,形成焊缝组织成分均匀化的熔钎接头。此时接头联结良好,强度最高可达330Mpa左右,已近接头最低母材强度的90%以上。偏铜值进一步增加,由于电子束斑的较大偏移及铜侧母材的急剧热散失,从而使接头钢侧对接面的电子束温度场的热作用降低,导致钎接界面处的原子扩散能力及程度下降,接头性能也随之降低。在偏铜量超过2.0mm时,由于电子束只对铜侧母材的加热作用,已无法形成有效的熔钎接头,接头未焊合。

结论

1) 电子束距对接中线铜侧偏移值的增加将导致QCr0.8/1Cr21Ni5Ti对接接头焊缝组织及成分的均匀化,改善了接头的熔接状态。

2)铜侧偏移值达0.8-1.0mm时,形成焊缝组织成分均匀化的熔钎接头,其拉伸强度可达330Mpa左右,已可满足实际使用要求。

搜索更多关于: 电子束原理 的文档
电子束原理.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7726167zse6tck19hlnd_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top