¡ºÐèÒªµÄ֪ʶ±³¾°¡»:º¯ÊýµÄÆæÅ¼ÐÔ,Ò»´Îº¯Êý¡¢¶þ´Îº¯Êý
1ÀýÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬Âú×ãf£¨x+1£©= - f£¨x£© £¨1£©Ö¤Ã÷£ºf£¨x£©ÊÇÖÜÆÚº¯Êý£¬²¢Çó×îСÕýÖÜÆÚ
£¨2£©µ±x¡Ê[0,1£©Ê±£¬f£¨x£©=x £¬ÇóÔÚ [-1,0£©ÉϵĽâÎöʽ £¨T=2 £¬ÒÑÇóºÃ£©£¨f£¨x£©=-x -1 £¬ÒÑÇóºÃ£©
**2Àýf(x)ͼÏñÂú×ãÏÂÁÐÌõ¼þ£¬ÊÔÖ¤Ã÷f(x)ΪÖÜÆÚº¯Êý
£¨1£©¹ØÓÚx=a, x=b ¶Ô³Æ. £¨2£©¹ØÓÚ(a,0), (b,0)¶Ô³Æ. £¨3£©¹ØÓÚ(a,0),
x=b¶Ô³Æ.
*3Á·¶Ôº¯Êýf(x),µ±x¡Ê£¨-¡Þ£¬+¡Þ£©Ê±£¬f(2-x)=f(2+x),f(7-x)=f(7+x),Ö¤Ã÷º¯Êýy=f(x)ΪÖÜÆÚº¯Êý,²¢Çó³ö×îСÕýÖÜÆÚ
f(x)=f(4-x)=f(14-x) f(x)=f(x+10) T=10
ÍÆ¹ã¸ÃÌ⣬¶ÔÈÎÒâ²»ÏàµÈµÄÁ½¸öʵÊýa,b,Èç¹û¶ÔÈÎÒâxÂú×ãf(a-x)=f(a+x),f(b-x)=f(b+x)£¬Ôò¸Ãº¯ÊýÊÇÒÔ2(b-a)ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬Ö¤Ã÷ͬÉÏÃæÀàËÆ
4ÀýÉèf(x)ºÍg(x)¾ùΪÖÜÆÚº¯Êý£¬f(x)µÄÖÜÆÚΪ2£¬g(x)µÄÖÜÆÚΪ3£¬ÎÊ£º f(x)¡Àg(x), f(x)g(x) ÊÇ·ñÊÇÖÜÆÚº¯ÊýÈôÊÇ,Çó³öËüÃǵÄÖÜÆÚ f(x)µÄÖÜÆÚΪ2£¬--->f(x+2m)=f(x) g(x)µÄÖÜÆÚΪ3£¬--->g(x+3n)=g(x)
2Óë3µÄ×îС¹«±¶ÊýÊÇ6£¬--->f(x+6s)=f(x),g(x+6s)=g(x)
f(x+6s)¡Àg(x+6s)=f(x)¡Àg(x)---->f(x)¡Àg(x)ÊÇÖÜÆÚΪ6µÄÖÜÆÚº¯Êý£» f(x+6s)g(x+6s)=f(x)g(x)-------->f(x)g(x)Ò²ÊÇÖÜÆÚΪ6µÄÖÜÆÚº¯Êý¡£
¸ßÖÐ˼άѵÁ·°à¡¶¸ßÒ»Êýѧ¡·
µÚ4½²----- º¯ÊýµÄ¶Ô³Æ×¨Ìâ(ÏÂ)
µÚ5½²----- ¶Ô³ÆÓëÖÜÆÚµÄ¹ØÏµ
¡º±¾½²Òªµã¡»:½Ï¸´ÔӵĶԳÆÓëÖÜÆÚ¡¢º¯ÊýµÄ¶Ô³ÆÓëÖÜÆÚÖ®¼äµÄ¹ØÏµ
֪ʶµã1:Á½¸öº¯ÊýµÄͼÏó¶Ô³ÆÐÔ
ÐÔÖÊ1£ºy?f(x)Óëy??f(x)¹ØÓÚxÖá¶Ô³Æ¡£
»»ÖÖ˵·¨£ºy?f(x)Óëy?g(x)ÈôÂú×ãf(x)??g(x)£¬¼´ËüÃǹØÓÚy?0¶Ô³Æ¡£ ÐÔÖÊ2£ºy?f(x)Óëy?f(?x)¹ØÓÚYÖá¶Ô³Æ¡£
»»ÖÖ˵·¨£ºy?f(x)Óëy?g(x)ÈôÂú×ãf(x)?g(?x)£¬¼´ËüÃǹØÓÚx?0¶Ô³Æ¡£ ÐÔÖÊ3£ºy?f(x)Óëy?f(2a?x)¹ØÓÚÖ±Ïßx?a¶Ô³Æ¡£
»»ÖÖ˵·¨£ºy?f(x)Óëy?g(x)ÈôÂú×ãf(x)?g(2a?x)£¬¼´ËüÃǹØÓÚx?a¶Ô³Æ¡£
ÐÔÖÊ4£ºy?f(x)Óëy?2a?f(x)¹ØÓÚÖ±Ïßy?a¶Ô³Æ¡£
»»ÖÖ˵·¨£ºy?f(x)Óëy?g(x)ÈôÂú×ãf(x)?g(x)?2a£¬¼´ËüÃǹØÓÚy?a¶Ô³Æ¡£ ÐÔÖÊ5£ºy?f(x)Óëy?2b?f(2a?x)¹ØÓÚµã(a,b)¶Ô³Æ¡£
»»ÖÖ˵·¨£ºy?f(x)Óëy?g(x)ÈôÂú×ãf(x)?g(2a?x)?2b£¬¼´ËüÃǹØÓÚµã(a,b)¶Ô³Æ¡£ ÐÔÖÊ6£ºy?f(a?x)Óëy?(x?b)¹ØÓÚÖ±Ïßx?֪ʶµã2:µ¥¸öº¯ÊýµÄ¶Ô³ÆÐÔ
ÐÔÖÊ1£ºº¯Êýy?f(x)Âú×ãf(a?x)?f(b?x)ʱ£¬º¯Êýy?f(x)µÄͼÏó¹ØÓÚÖ±Ïßx?³Æ¡£ Ö¤Ã÷£º
ÐÔÖÊ2£ºº¯Êýy?f(x)Âú×ãf(a?x)?f(b?x)?cʱ£¬º¯Êýy?f(x)µÄͼÏó¹ØÓڵ㣨
c£©¶Ô³Æ¡£ 2a?b£¬2a?b¶Ô2a?b¶Ô³Æ¡£ 2Ö¤Ã÷£º
ÐÔÖÊ3£ºº¯Êýy?f(a?x)µÄͼÏóÓëy?f(b?x)µÄͼÏó¹ØÓÚÖ±Ïßx?Ö¤Ã÷£º
֪ʶµã3:¶Ô³ÆÐÔºÍÖÜÆÚÐÔÖ®¼äµÄÁªÏµ
ÐÔÖÊ1£ºº¯Êýy?f(x)Âú×ãf(a?x)?f(a?x)£¬f(b?x)?f(b?x)(a?b)£¬ÇóÖ¤£ºº¯Êý
y?f(x)ÊÇÖÜÆÚº¯Êý¡£
b?a¶Ô³Æ¡£ 2Ö¤Ã÷£º
ÐÔÖÊ2£ºº¯Êýy?f(x)Âú×ãf(a?x)?f(a?x)?cºÍf(b?x)?f(b?x)?c(a?b)ʱ£¬º¯Êý
cc£¨º¯Êýy?f(x)ͼÏóÓÐÁ½¸ö¶Ô³ÆÖÐÐÄ£¨a£¬£©¡¢£¨b£¬£©Ê±£¬º¯y?f(x)ÊÇÖÜÆÚº¯Êý¡£
22Êýy?f(x)ÊÇÖÜÆÚº¯Êý£¬ÇÒ¶Ô³ÆÖÐÐľàÀëµÄÁ½±¶£¬ÊǺ¯ÊýµÄÒ»¸öÖÜÆÚ£© Ö¤Ã÷£º
ÐÔÖÊ3£ºº¯Êýy?f(x)ÓÐÒ»¸ö¶Ô³ÆÖÐÐÄ£¨a£¬c£©ºÍÒ»¸ö¶Ô³ÆÖáx?b£¨a¡Ùb£©Ê±£¬¸Ã
º¯ÊýÒ²ÊÇÖÜÆÚº¯Êý£¬ÇÒÒ»¸öÖÜÆÚÊÇ4(b?a)¡£ Ö¤Ã÷£º
ÍÆÂÛ£ºÈô¶¨ÒåÔÚRÉϵĺ¯Êýf(x)µÄͼÏó¹ØÓÚÖ±Ïßx?aºÍµã(b,0)(a?b)¶Ô³Æ£¬Ôòf(x)ÊÇÖÜÆÚº¯Êý£¬4(b?a)ÊÇËüµÄÒ»¸öÖÜÆÚ
Ö¤Ã÷£º
ÐÔÖÊ4£ºÈôº¯Êýf(x)¶Ô¶¨ÒåÓòÄÚµÄÈÎÒâxÂú×㣺f(x?a)?f(x?a),Ôò2aΪº¯Êýf(x)µÄÖÜÆÚ¡££¨Èôf(x)Âú×ãf(x?a)?f(x?a)Ôòf(x)µÄͼÏóÒÔx?aΪͼÏóµÄ¶Ô³ÆÖᣬӦעÒâ¶þÕßµÄÇø±ð) Ö¤Ã÷£º
ÐÔÖÊ5£ºÒÑÖªº¯Êýy?f?x?¶ÔÈÎÒâʵÊýx,¶¼ÓÐf?a?x??f?x??b£¬Ôòy?f?x?ÊÇÒÔ
2aΪÖÜÆÚµÄº¯Êý
Ö¤Ã÷£º
¡ºÀýÌâÓëϰÌâ¡»:
1Àý£¨2005¸ß¿¼¡¤¸£½¨Àí£©f(x)ÊǶ¨ÒåÔÚRÉϵÄÒÔ3ΪÖÜÆÚµÄÆæº¯Êý£¬ÇÒf(2)?0£¬
Ôò·½³Ìf(x)?0ÔÚÇø¼ä£¨0£¬6£©ÄÚ½âµÄ¸öÊýµÄ×îСֵÊÇ£¨ £© A£®3
B£®4
C£®5
D£®7
*2Àý f(x)µÄ¶¨ÒåÓòÊÇR£¬ÇÒf(x?2)[1?f(x)]?1?f(x),Èôf(0)?2008. Çóf(2008)µÄÖµ¡£
3Á· º¯Êýf?x?¶ÔÓÚÈÎÒâʵÊýxÂú×ãÌõ¼þf?x?2??f?f?5???_______________¡£
1£¬Èôf?1???5,Ôòf?x?½â£ºÓÉf?x?2??11?f(x)£¬ËùÒÔf(5)?f(1)??5£¬ÔòµÃf?x?4??f?x?f?x?2?11??
f(?1?2)5f?f?5???f(?5)?f(?1)?0?ÉÏÊÇÔöº¯Êý£¬ÇÒf(x?2)??f(x). *4Àý Èôº¯Êýf(x)ÔÚRÉÏÊÇÆæº¯Êý£¬ÇÒÔÚ??1£¬¢ÙÇóf(x)µÄÖÜÆÚ£»
¢ÚÖ¤Ã÷f(x)µÄͼÏó¹ØÓÚµã(2k,0)ÖÐÐĶԳÆ;¹ØÓÚÖ±Ïßx?2k?1Öá¶Ô³Æ,
(k?Z);
¢ÛÌÖÂÛf(x)ÔÚ(1,2)Éϵĵ¥µ÷ÐÔ£»
½â: ¢ÙÓÉÒÑÖªf(x)??f(x?2)?f(x?2?2)?f(x?4)£¬¹ÊÖÜÆÚT?4.
¢ÚÉèP(x,y)ÊÇͼÏóÉÏÈÎÒâÒ»µã,Ôòy?f(x),ÇÒP¹ØÓÚµã(2k,0)¶Ô³ÆµÄµãΪ
P1(4k?x,?y).P¹ØÓÚÖ±Ïßx?2k?1¶Ô³ÆµÄµãΪP2(4k?2?x,y)
¡ßf(4k?x)?f(?x)??f(x)??y,¡àµãP1ÔÚͼÏóÉÏ,ͼÏó¹ØÓÚµã(2k,0)¶Ô³Æ. ÓÖf(x)ÊÇÆæº¯Êý,f(x?2)??f(x)?f(?x) ¡àf(4k?2?x)?f(2?x)?f(x)?y ¡àµãP2ÔÚͼÏóÉÏ,ͼÏó¹ØÓÚÖ±Ïßx?2k?1¶Ô³Æ.
¢ÛÉè1?x1?x2?2£¬Ôò?2??x2??x1??1£¬0?2?x2?2?x1?1 ¡ßf(x)ÔÚ(?1,0)ÉϵÝÔö, ¡àf(2?x1)?f(2?x2)¡¡(*) ÓÖf(x?2)??f(x)?f(?x) ¡àf(2?x1)?f(x1),f(2?x2)?f(x2) . ËùÒÔ£ºf(x2)?f(x1) £¬f(x)ÔÚ(1,2)ÉÏÊǼõº¯Êý.
5Àý ÒÑÖªº¯Êýy?f(x)ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚº¯Êý£¬ÖÜÆÚT?5£¬º¯ÊýÔÚ[1,4]ÉÏÊǶþ´Îº¯y?f(x)(?1?x?1)ÊÇÆæº¯Êý.ÓÖÖªy?f(x)ÔÚ[0,1]ÉÏÊÇÒ»´Îº¯Êý£¬Êý£¬ÇÒÔÚx?2ʱº¯ÊýÈ¡µÃ×îСֵ?5. £¨1£©Ö¤Ã÷£ºf(1)?f(4)?0£» £¨2£©Çóy?f(x),x?[1,4]µÄ½âÎöʽ£» **£¨3£©Çóy?f(x)ÔÚ[4,9]ÉϵĽâÎöʽ.
½â£º¡ßf(x)ÊÇÒÔ5ΪÖÜÆÚµÄÖÜÆÚº¯Êý£¬ÇÒÔÚ[?1,1]ÉÏÊÇÆæº¯Êý£¬¡à
f(1)??f(?1)??f(5?1)??f(4)£¬¡àf(1)?f(4)?0.
¢Úµ±x?[1,4]ʱ£¬ÓÉÌâÒâ¿ÉÉèf(x)?a(x?2)2?5 (a?0)£¬ ÓÉf(1)?f(4)?0µÃa(1?2)2?5?a(4?2)2?5?0£¬¡àa?2£¬ ¡àf(x)?2(x?2)2?5(1?x?4).
¢Û¡ßy?f(x)(?1?x?1)ÊÇÆæº¯Êý£¬¡àf(0)?0£¬
ÓÖÖªy?f(x)ÔÚ[0,1]ÉÏÊÇÒ»´Îº¯Êý£¬¡à¿ÉÉèf(x)?kx(0?x?1) ¶øf(1)?2(1?2)2?5??3£¬
¡àk??3£¬¡àµ±0?x?1ʱ£¬f(x)??3x£¬
´Ó¶ø?1?x?0ʱ£¬f(x)??f(?x)??3x£¬¹Ê?1?x?1ʱ£¬f(x)??3x. ¡àµ±4?x?6ʱ£¬ÓÐ?1?x?5?1£¬¡àf(x)?f(x?5)??3(x?5)??3x?15. µ±6?x?9ʱ£¬1?x?5?4£¬
¡àf(x)?f(x?5)?2[(x?5)?2]2?5?2(x?7)2?5 ¡àf(x)????3x?15,24?x?66?x?9?2(x?7)?5,.
¡º¿Îºó×÷Òµ¡»:
6Á· ÒÑÖª¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf(x)Âú×ãf(x?2)??f(x)£¬Ôòf(6)µÄֵΪ£¨ B £©
(A)£1 (B) 0 (C) 1 (D)2 ½â£ºÒòΪf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý
ËùÒÔf(0)?0£¬ÓÖf(x?4)??f(x?2)?f(x)£¬¹Êº¯Êý£¬f(x)µÄÖÜÆÚΪ4 ËùÒÔf(6)?f(2)??f(0)?0£¬Ñ¡B
7Á·¶¨ÒåÔÚRÉϵķdz£Êýº¯ÊýÂú×㣺f (10+x)Ϊżº¯Êý£¬ÇÒf (5£x) = f (5+x),Ôòf (x)Ò»¶¨ÊÇ£¨ A £©
£¨µÚÊ®¶þ½ì¸ßÖÐÊýѧϣÍû± µÚ¶þÌ⣩
(B)ÊÇżº¯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý (D)ÊÇÆæº¯Êý£¬µ«²»ÊÇÖÜÆÚº¯Êý
(A)ÊÇżº¯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý (C)ÊÇÆæº¯Êý£¬Ò²ÊÇÖÜÆÚº¯Êý
½â£º¡ßf (10+x)Ϊżº¯Êý£¬¡àf (10+x) = f (10£x).
Ïà¹ØÍÆ¼ö£º