【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.
24.(7.00分)为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:
(1)直接写出a的值,a= 30 ,并把频数分布直方图补充完整. (2)求扇形B的圆心角度数.
(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?
【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;
(2)用360°乘以A等级人数所占比例可得; (3)用总人数乘以样本中E等级人数所占比例. 【解答】解:(1)∵被调查的总人数为10÷∴D等级人数所占百分比a%=
=50(人),
×100%=30%,即a=30,
C等级人数为50﹣(5+7+15+10)=13人, 补全图形如下:
故答案为:30;
(2)扇形B的圆心角度数为360°×
=50.4°;
(3)估计获得优秀奖的学生有2000×=400人.
【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25.(8.00分)某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:
(1)甲车间每天加工大米 20 吨,a= 15 .
(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.
(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?
【分析】(1)根据题意,由图2得出两个车间同时加工和甲单独加工的速度; (2)用待定系数法解决问题;
(3)求出两个车间每天加工速度分别计算两个55吨完成的时间.
【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨, 则乙一天加工35﹣20=15吨.a=15 故答案为:20,15 (2)设y=kx+b
把(2,15),(5,120)代入
解得
∴y=35x﹣55 (3)由图2可知
当w=220﹣55=165时,恰好是第二天加工结束. 当2≤x≤5时,两个车间每天加工速度为∴再过1天装满第二节车厢
【点评】本题为一次函数实际应用问题,应用了待定系数法.解答要注意通过对边两个函数图象实际意义对比分析得到问题答案.
26.(8.00分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.
(1)当点E在线段BD上移动时,如图(1)所示,求证:BC﹣DE=
DF.
=55吨
(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段BC、DE与DF又有怎样的数量关系?请直接写出你的猜想,不需证明.
【分析】(1)如图1中,在BA上截取BH,使得BH=BE.构造全等三角形即可解决问题;
(2)如图2中,在BC上截取BH=BE,同法可证:DF=EH.可得:DE﹣BC=图3中,在BA上截取BH,使得BH=BE.同法可证:DF=HE,可得BC+DE=【解答】(1)证明:如图1中,在BA上截取BH,使得BH=BE.
DF.如DF.
∵BC=AB=BD,BE=BH, ∴AH=ED,
∵∠AEF=∠ABE=90°,
∴∠AEB+∠FED=90°,∠AEB+∠BAE=90°, ∴∠FED=∠HAE, ∵∠BHE=∠CDB=45°, ∴∠AHE=∠EDF=135°, ∴△AHE≌△EDF, ∴HE=DF,
∴BC﹣DE=BD﹣DE=BE=∴BC﹣DE=
DF.
EH=
DF.
相关推荐: