µÚÒ»·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

2019-2020Äê¸ß¿¼Êýѧ¶þÂÖ¸´Ï° רÌâ2 º¯ÊýÓëµ¼Êý µÚ4½² Ó뺯ÊýµÄÁãµãÏà¹ØµÄÎÊÌâ Àí

À´Ô´£ºÓû§·ÖÏí ʱ¼ä£º2025/5/24 7:51:58 ±¾ÎÄÓÉloading ·ÖÏí ÏÂÔØÕâÆªÎĵµÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:xxxxxxx»òQQ£ºxxxxxx ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣

2019-2020Äê¸ß¿¼Êýѧ¶þÂÖ¸´Ï° רÌâ2 º¯ÊýÓëµ¼Êý µÚ4½² Ó뺯Êý

µÄÁãµãÏà¹ØµÄÎÊÌâ Àí

º¯ÊýÁãµãµÄ¸öÊýÎÊÌâ

1.º¯Êýf(x)=xcos 2xÔÚÇø¼ä[0,2¦Ð]ÉϵÄÁãµãµÄ¸öÊýΪ( D ) (A)2 (B)3 (C)4 (D)5

½âÎö:Ҫʹf(x)=xcos 2x=0,Ôòx=0,»òcos 2x=0,¶øÔÚÇø¼ä[0,2¦Ð]ÉÏ,ͨ¹ý¹Û²ìy=cos 2xµÄº¯ÊýͼÏó,Ò×µÃÂú×ãcos 2x=0µÄxµÄÖµÓÐ,,,,ËùÒÔÁãµãµÄ¸öÊýΪ5¸ö.

x

2.(xxÄϲý¶þÄ£)ÒÑÖªº¯Êýf(x)=º¯Êýg(x)ÊÇÖÜÆÚΪ2µÄżº¯Êý,ÇÒµ±x¡Ê[0,1]ʱ,g(x)=2-1,Ôòº¯Êýy=f(x)-g(x)µÄÁãµã¸öÊýÊÇ( B ) (A)5 (B)6 (C)7 (D)8

½âÎö:º¯Êýy=f(x)-g(x)µÄÁãµã¸öÊý¾ÍÊǺ¯Êýy=f(x)Óëy=g(x)ͼÏóµÄ½»µã¸öÊý.ÔÚÍ¬Ò»×ø±êϵÖл­³öÕâÁ½¸öº¯ÊýµÄͼÏó:

ÓÉͼ¿ÉµÃÕâÁ½¸öº¯ÊýµÄ½»µãΪA,O,B,C,D,E,¹²6¸öµã. ËùÒÔÔ­º¯Êý¹²ÓÐ6¸öÁãµã.¹ÊÑ¡B.

3.(xxÄϲýÊÐһģ)ÒÑÖªº¯Êýf(x)=Èô¹ØÓÚxµÄ·½³Ìf[f(x)]=0ÓÐÇÒÖ»ÓÐÒ»¸öʵÊý½â,ÔòʵÊýaµÄȡֵ·¶Î§Îª .

½âÎö:ÒÀÌâÒâ,µÃa¡Ù0,Áîf(x)=0,µÃlg x=0,¼´x=1,ÓÉf[f(x)]=0,µÃf(x)=1,

µ±x>0ʱ,º¯Êýy=lg xµÄͼÏóÓëÖ±Ïßy=1ÓÐÇÒÖ»ÓÐÒ»¸ö½»µã,Ôòµ±x¡Ü0ʱ,º¯Êýy=µÄͼÏóÓëÖ±Ïßy=1ûÓн»µã,Èôa>0,½áÂÛ³ÉÁ¢;Èôa<0,Ôòº¯Êýy=µÄͼÏóÓëyÖá½»µãµÄ×Ý×ø±ê-a<1,µÃ-1

¢ÙÈôa=1,Ôòf(x)µÄ×îСֵΪ ;

¢ÚÈôf(x)Ç¡ÓÐ2¸öÁãµã,ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ . ½âÎö:

¢Ùµ±a=1ʱ,f(x)=Æä´óÖÂͼÏóÈçͼËùʾ: ÓÉͼ¿ÉÖªf(x)µÄ×îСֵΪ-1.

¢Úµ±a¡Ü0ʱ,ÏÔÈ»º¯Êýf(x)ÎÞÁãµã;

µ±0

µ±a¡Ý1ʱ,2a>1,Óɶþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÖª,µ±x¡Ý1ʱ,f(x)ÓÐ2¸ö Áãµã,

ÔòҪʹf(x)Ç¡ÓÐ2¸öÁãµã,ÔòÐèÒªf(x)ÔÚ(-¡Þ,1)ÉÏÎÞÁãµã,Ôò2-a¡Ü0,¼´a¡Ý2. ×ÛÉÏ¿ÉÖª,Âú×ãÌõ¼þµÄaµÄȡֵ·¶Î§ÊÇ [,1)¡È[2,+¡Þ).

´ð°¸:¢Ù-1 ¢Ú[,1)¡È[2,+¡Þ) È·¶¨º¯ÊýÁãµãËùÔÚµÄÇø¼ä

5.(xxËÄ´¨³É¶¼ÊÐÒ»Õï)·½³Ìln(x+1)-=0(x>0)µÄ¸ù´æÔڵĴóÖÂÇø¼äÊÇ( B )

(A)(0,1) (B)(1,2) (C)(2,e) (D)(3,4) ½âÎö:Éèf(x)=ln(x+1)-,Ôòf(1)=ln 2-2<0,f(2)=ln 3-1>0,µÃf(1)f(2)<0,º¯Êýf(x)ÔÚÇø¼ä(1,2)ÓÐÁãµã,¹ÊÑ¡B.

x2

6.(xxºÓÄÏÖ£ÖÝÊÐһģ)É躯Êýf(x)=e+2x-4,g(x)=ln x+2x-5,ÈôʵÊýa,b·Ö±ðÊÇf(x),g(x)µÄÁãµã,Ôò( A )

(A)g(a)<0

x

½âÎö:¿¼²éº¯Êýy=eÓëy=4-2xµÄͼÏó,µÃÆä½»µãµÄºá×ø±êaÓ¦Âú×ã0

2

Óëy=5-2xµÄͼÏó,µÃÆä½»µãµÄºá×ø±êbÓ¦

Âú×ã1e+2-4>0,¿ÉÅųýC,D;0

ÀûÓõ¼Êý½â¾öÓ뺯ÊýÓйصķ½³Ì¸ù(º¯ÊýÁãµã)ÎÊÌâ

2x

7.(xxºÓÄÏÊ¡ÁùÊÐ3ÔµÚÒ»´ÎÁªºÏµ÷ÑÐ)É躯Êýf(x)=xln x,g(x)=(-x+ax-3)e(aΪʵÊý). (1)µ±a=5ʱ,Çóº¯Êýy=g(x)ÔÚx=1´¦µÄÇÐÏß·½³Ì; (2)Çóf(x)ÔÚÇø¼ä[t,t+2](t>0)ÉϵÄ×îСֵ;

x

(3)Èô´æÔÚÁ½²»µÈʵ¸ùx1,x2¡Ê[,e],ʹ·½³Ìg(x)=2ef(x)³ÉÁ¢,ÇóʵÊýaµÄȡֵ·¶Î§.

2x

½â:(1)µ±a=5ʱg(x)=(-x+5x-3)¡¤e,g(1)=e.

2x

g¡ä(x)=(-x+3x+2)¡¤e,¹ÊÇÐÏßµÄбÂÊΪg¡ä(1)=4e. ËùÒÔÇÐÏß·½³ÌΪy-e=4e(x-1),¼´y=4ex-3e. (2)f¡ä(x)=ln x+1, x f¡ä(x) f(x) (0,) - µ¥µ÷µÝ¼õ 0 ¼«Ð¡Öµ(×îСֵ) (,+¡Þ) + µ¥µ÷µÝÔö ¢Ùµ±t¡Ýʱ,ÔÚÇø¼ä(t,t+2)ÉÏf(x)ΪÔöº¯Êý, ËùÒÔf(x)min=f(t)=tln t,

¢Úµ±0

x2

(3)ÓÉg(x)=2ef(x),¿ÉµÃ2xln x=-x+ax-3, a=x+2ln x+,

Áîh(x)=x+2ln x+, h¡ä(x)=1+-=.

x h¡ä(x) h(x) (,1) - µ¥µ÷µÝ¼õ 1 0 ¼«Ð¡Öµ(×îСֵ) (1,e) + µ¥µ÷µÝÔö h£¨£©=+3e-2,h(1)=4,h(e)=+e+2. h(e)-h£¨£©=4-2e+<0.

ËùÒÔʵÊýaµÄȡֵ·¶Î§Îª£¨4,e+2+].

2

8.(xxºþ±±°ËÊÐÁª¿¼)ÒÑÖªº¯Êýf(x)=ln(x+a)-x-xÔÚx=0´¦È¡µÃ ¼«Öµ.

(1)ÇóʵÊýaµÄÖµ;

(2)Èô¹ØÓÚxµÄ·½³Ìf(x)=-x+bÔÚÇø¼ä[0,2]ÉÏÇ¡ÓÐÁ½¸ö²»Í¬µÄʵÊý¸ù,ÇóʵÊýbµÄȡֵ·¶Î§.

¡ä

½â:(1)f(x)=-2x-1,

¡ä

ÒòΪx=0ʱ,f(x)È¡µÃ¼«Öµ,ËùÒÔf(0)=0, ¹Ê-2¡Á0-1=0,½âµÃa=1,

¾­¼ìÑéµ±a=1ʱ,f(x)ÔÚx=0´¦È¡µÃ¼«´óÖµ·ûºÏÌâÒâ, ËùÒÔa=1.

2

(2)ÓÉa=1Öªf(x)=ln(x+1)-x-x, ÓÉf(x)=-x+b,

2

µÃln(x+1)-x+x-b=0,

2

Áî(x)=ln(x+1)-x+x-b,

Ôòf(x)=-x+bÔÚ[0,2]ÉÏÇ¡ÓÐÁ½¸ö²»Í¬µÄʵÊý¸ùµÈ¼ÛÓÚ(x)=0ÔÚ[0,2]ÉÏÇ¡ÓÐÁ½¸ö²»Í¬µÄʵÊý¸ù.

¡ä(x)=-2x+=,

µ±x¡Ê(0,1)ʱ,¡ä(x)>0,ÓÚÊÇ(x)ÔÚ(0,1)Éϵ¥µ÷µÝÔö; µ±x¡Ê(1,2)ʱ,¡ä(x)<0,ÓÚÊÇ(x)ÔÚ(1,2)Éϵ¥µ÷µÝ¼õ; ÒÀÌâÒâÓÐ

½âµÃln 3-1¡Üb

ËùÒÔʵÊýbµÄȡֵ·¶Î§ÊÇ[ln 3-1,ln 2+).

Ò»¡¢Ñ¡ÔñÌâ

abx

1.(xx̫ԭһģ)ÒÑ֪ʵÊýa,bÂú×ã2=3,3=2,Ôòº¯Êýf(x)=a+x-bµÄÁãµãËùÔÚµÄÇø¼äÊÇ( B )

(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)

ab

½âÎö:ÒòΪʵÊýa,bÂú×ã2=3,3=2, ËùÒÔa=log23>1,0

x

ÒòΪº¯Êýf(x)=a+x-b,

x

ËùÒÔf(x)=(log23)+x-log32µ¥µ÷µÝÔö, ÒòΪf(0)=1-log32>0

f(-1)=log32-1-log32=-1<0,

x

ËùÒÔ¸ù¾Ýº¯ÊýµÄÁãµã´æÔÚÐÔ¶¨ÀíµÃ³öº¯Êýf(x)=a+x-bµÄÁãµãËùÔÚµÄÇø¼äÊÇ(-1,0),¹ÊÑ¡B. 2.(xxÁ¹É½ÖÝÄ£Äâ)É躯Êýf(x)=|ln x|-µÄÁ½¸öÁãµãΪx1,x2,ÔòÓÐ( A ) (A)x1x2<1 (B)x1x2=1 (C)1

½âÎö:ÓÉf(x)=|ln x|-=0,µÃ|ln x|=, ×÷º¯Êýy=|ln x|Óëy=µÄͼÏóÈçͼ.

²»·ÁÉèx1

ÓÉͼ¿ÉÖª,x1<1

Ôòln x1<0,ÇÒ|ln x1|>|ln x2|,

ËùÒÔ-ln x1>ln x2,Ôòln x1+ln x2<0,¼´ln (x1x2)<0, ËùÒÔx1x2<1. ¹ÊÑ¡A.

3.(xx°ö²º¶þÄ£)º¯Êýf(x)=ÓÐÇÒÖ»ÓÐÒ»¸öÁãµãʱ,aµÄȡֵ·¶Î§ÊÇ( D ) (A)(-¡Þ,0] (B)(0,)

(C)(,1) (D)(-¡Þ,0]¡È(1,+¡Þ) ½âÎö:ÒòΪf(1)=ln 1=0,

ËùÒÔµ±x¡Ü0ʱ,º¯Êýf(x)ûÓÐÁãµã,

xx

¹Ê-2+a>0»ò-2+a<0ÔÚ(-¡Þ,0]ÉϺã³ÉÁ¢,

xx

¼´a>2,»òa<2ÔÚ(-¡Þ,0]ÉϺã³ÉÁ¢, ¹Êa>1»òa¡Ü0.¹ÊÑ¡D.

4.(xxÖØÇì¾í)ÒÑÖªº¯Êýf(x)=ÇÒg(x)=f(x)-mx-mÔÚ(-1,1]ÄÚÓÐÇÒ½öÓÐÁ½¸ö²»Í¬µÄÁãµã,ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ( A )

(A)(-,-2]¡È(0,] (B)£¨-,-2]¡È(0,] (C)(-,-2]¡È(0,] (D)(-,-2]¡È(0,]

½âÎö:g(x)=f(x)-mx-mÔÚ(-1,1]ÄÚÓÐÇÒ½öÓÐÁ½¸ö²»Í¬µÄÁãµã¾ÍÊǺ¯Êýy=f(x)µÄͼÏóÓ뺯Êýy=m(x+1)µÄͼÏóÓÐÁ½¸ö½»µã,ÔÚͬһֱ½Ç×ø±êϵÄÚ×÷³öº¯Êýf(x)=ºÍº¯Êýy=m(x+1)µÄͼÏó,Èçͼ,µ±Ö±Ïßy=m(x+1)Óëy=-3,x¡Ê(-1,0]ºÍy=x,x¡Ê(0,1]¶¼Ïཻʱ,0

2

Óëy=-3,x¡Ê(-1,0]ÓÐÁ½¸ö½»µãʱ,ÓÉ·½³Ì×éÏûÔªµÃ-3=m(x+1),¼´m(x+1)+3(x+1)-1=0,»¯¼ò

2

µÃmx+(2m+3)x+m+2=0,µ±¦¤=9+4m=0,¼´m=-ʱ,Ö±Ïßy=m(x+1)Óëy=-3ÏàÇÐ,µ±Ö±Ïßy=m(x+1)¹ýµã(0,-2)ʱ,m=-2,ËùÒÔm¡Ê(-,-2].×ÛÉÏ,ʵÊýmµÄȡֵ·¶Î§ÊÇ(-,-2)]¡È(0,],¹ÊÑ¡A.

5.(xxºþ±±¾í)ÒÑÖªf(x)ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý,µ±x¡Ý0ʱ,

2

f(x)=x-3x.Ôòº¯Êýg(x)=f(x)-x+3µÄÁãµãµÄ¼¯ºÏΪ( D ) (A){1,3} (B){-3,-1,1,3} (C){2-,1,3} (D){-2-,1,3}

½âÎö:µ±x¡Ý0ʱ,º¯Êýg(x)µÄÁãµã¼´·½³Ìf(x)=x-3µÄ¸ù,

2

ÓÉx-3x=x-3, ½âµÃx=1»ò3;

µ±x<0ʱ,ÓÉf(x)ÊÇÆæº¯ÊýµÃ

2

-f(x)=f(-x)=x-3(-x),

2

¼´f(x)=-x-3x.

ÓÉf(x)=x-3µÃx=-2-(Õý¸ùÉáÈ¥).¹ÊÑ¡D.

x

6.ÒÑÖªx0ÊǺ¯Êýf(x)=2+µÄÒ»¸öÁãµã,Èôx1¡Ê(1,x0),x2¡Ê(x0,+¡Þ),Ôò( B ) (A)f(x1)<0,f(x2)<0 (B)f(x1)<0,f(x2)>0 (C)f(x1)>0,f(x2)<0 (D)f(x1)>0,f(x2)>0

x

½âÎö:º¯Êýy=2,y=ÔÚ(1,+¡Þ)¶¼Îªµ¥µ÷Ôöº¯Êý,

2019-2020Äê¸ß¿¼Êýѧ¶þÂÖ¸´Ï° רÌâ2 º¯ÊýÓëµ¼Êý µÚ4½² Ó뺯ÊýµÄÁãµãÏà¹ØµÄÎÊÌâ Àí.doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡
±¾ÎÄÁ´½Ó£ºhttps://www.diyifanwen.net/c7b5dh77vnm0a6ri16ozy38gut0xt46013ss_1.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©
ÈÈÃÅÍÆ¼ö
Copyright © 2012-2023 µÚÒ»·¶ÎÄÍø °æÈ¨ËùÓÐ ÃâÔðÉùÃ÷ | ÁªÏµÎÒÃÇ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£ºxxxxxx ÓÊÏ䣺xxxxxx@qq.com
ÓåICP±¸2023013149ºÅ
Top