几何计数
知识框架
一、几何计数
在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n条直线最多将平面分成 12?2?3?……?n?(n2?n?2)个部分;n个圆最多分平面的部分数为n(n-1)+2;n个三角形将平面最多
2分成3n(n-1)+2部分;n个四边形将平面最多分成4n(n-1)+2部分……
在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步 求解.
排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.
二、几何计数分类
(1) 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个
点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条
(2) 数角:数角与数线段相似,线段图形中的点类似于角图形中的边.
(3) 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线
段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形.
ADBEC
(4) 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条
线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个.
1 / 11
重难点
(1) 重点:三角形、长方形、正方形的计数方法. (2) 难点:复杂正方的计数技巧
例题精讲
【例 1】 数一数,共有________条线段.
ACDEFGB
【巩固】 正方形边长是a,六个叠在一起组成的图形,周长是多少?如果100个这样的正方形叠在一起,周
长是多少?
【例 2】 下图中有________个角.
【巩固】 下图中有________个角?
AC1C2C9O
B
2 / 11
【例 3】 下图有________个三角形?
【巩固】 下图有________个三角形?
【例 4】 下图有________条线段,________个三角形
【巩固】 下图有________条线段?有________个三角形?
【例 5】 下图中有________三角形?
3 / 11
【巩固】 下图中有________三角形?
【例 6】 下图中有________个长方形?
【巩固】 下图中有多少________个长方形?
A D
C1
……
Cn-1
B D1 …… Dm-1 C
【例 7】 下图中有________个长方形?
4 / 11
相关推荐: