启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。
(5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
3.教学例3。
(1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?
(2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:
5 / 11
转化成的长方形 平行四边形
长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c
(3)小组讨论:
①转化成的长方形与平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?
③根据,长方形的面积公式,怎样求平行四边形的面积?
6 / 11
(4)反馈、交流,抽象出面积公式。
根据学生的讨论进行如.下的板书:
因为 长方形的面积二长宽
所以 平行四边形的面积二底高
(5)用字母表示公式。
如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?
结合学生的回答,板书:
7 / 11
S=ah
(6)指导完成试一试。 ,
先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。
三、巩固深化
1.指导完成练一练。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。
2.指导完成练习二第1题 。
(1)明确要求,鼓励学生尝试操作。
8 / 11
相关推荐: