第一范文网 - 专业文章范例文档资料分享平台

高等数学知识点总结

来源:用户分享 时间:2025/5/18 1:38:04 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

WORD格式-专业学习资料-可编辑

高等数学知识点总结

导数公式:

(tanx)??secx(ctanx)???cscx(secx)??secx?tanx(cscx)???cscx?cotx(ax)??axlna1(logax)??xlna基本积分表:

三角函数的有理式积分:

22(arcsinx)??11?x21(arccosx)???1?x21(arctanx)??1?x21(arccotx)???1?x2?tanxdx??lncosx?C?cotxdx?lnsinx?C?secxdx?lnsecx?tanx?C?cscxdx?lncscx?cotx?Cdx1x?arctan?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?sec2?cosx?xdx?tanx?Cdx2?sin2x??cscxdx??cotx?C?secx?tanxdx?secx?C?cscx?cotxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22xa2x2222a?xdx?a?x?arcsin?C22a222u1?u2x2dusinx?, cosx?, u?tan, dx?222

1?u1?u21?u学习资料分享

WORD格式-专业学习资料-可编辑

一些初等函数: 两个重要极限:

ex?e?x双曲正弦:shx?2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??chxex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?x三角函数公式: ·诱导公式:

函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α limsinx?1x?0x1xlim(1?)?ex??x

sin cos tg ctg -sinα cosα cosα cosα sinα sinα -tanα -cotα cotα tanα -sinα -cotα -tanα -cosα -tanα -cotα cotα tanα -sinα -cosα tanα -cosα -sinα cotα -cosα sinα -sinα cosα sinα cosα -cotα -tanα -tanα -cotα tanα cotα

·和差角公式: ·和差化积公式:

sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tan??tan?1?tan??tan?cot??cot??1cot(???)?cot??cot?tan(???)?

sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos???学习资料分享

WORD格式-专业学习资料-可编辑

·倍角公式:

sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?cot2??cot??12cot?2tan?tan2??1?tan2?2sin3??3sin??4sin3?cos3??4cos3??3cos?3tan??tan3?tan3??1?3tan2?

·半角公式:

sin?2????1?cos??1?cos?            cos??2221?cos?1?cos?sin??1?cos?1?cos?sin???  cot????1?cos?sin?1?cos?21?cos?sin?1?cos?abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinCtan?2

·正弦定理:

·反三角函数性质:arcsinx??2?arccosx   arctanx??2?arccotx

高阶导数公式——莱布尼兹(Leibniz)公式:

(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!

中值定理与导数应用:

拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)曲率:

当F(x)?x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d? M点的曲率:K?lim??.23?s?0?sds(1?y?)1.a学习资料分享

直线:K?0;半径为a的圆:K?WORD格式-专业学习资料-可编辑

定积分的近似计算:

b矩形法:?f(x)?abb?a(y0?y1???yn?1)nb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n

梯形法:?f(x)?ab抛物线法:?f(x)?a定积分应用相关公式:

功:W?F?s水压力:F?p?Amm引力:F?k122,k为引力系数

rb1函数的平均值:y?f(x)dx?b?aa1均方根:f2(t)dt?b?aa空间解析几何和向量代数:

b空间2点的距离:d?M1M2?(x2?x1)2?(y2?y1)2?(z2?z1)2向量在轴上的投影:PrjuAB?AB?cos?,?是AB与u轴的夹角。????Prju(a1?a2)?Prja1?Prja2????a?b?a?bcos??axbx?ayby?azbz,是一个数量,两向量之间的夹角:cos??i???c?a?b?axbxjaybyaxbx?ayby?azbzax?ay?az?bx?by?bz222222k??????az,c?a?bsin?.例:线速度:v?w?r.bzaybycyaz???bz?a?b?ccos?,?为锐角时, czax??????向量的混合积:[abc]?(a?b)?c?bxcx代表平行六面体的体积。学习资料分享

搜索更多关于: 高等数学知识点总结 的文档
高等数学知识点总结.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7dkop386hm6gjog0oh073pit886asl004wx_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top