所求重心为?0,??4b??. 3π?(3)闭区域D如图10-32所示:
图10-32
由于闭区域D关于x轴对称,所以y?0, 又
πA???Ddxdy?2?d??20bcos?acos?πrdr??20(b?a)cos?d??222π4(b?a)
22故
x??1A??Dxdxdy??2A3π?20d?3?bcos?acos?2rcos?dr?222Aπ?20b?a333cos?d?48π(b?a)22π(b?a)16?a?ab?b2(a?b)
.?a2?ab?b2?,0? 所求重心为??2(a?b)?19. 设平面薄片所占的闭区域D由抛物线y=x2及直线y=x所围成,它在点(x,y)处的面密2
度ρ(x,y)=xy,求该薄片的重心。 解:闭区域D如图10-33所示:
图10-33
薄片的质量为
226
M???D?(x,y)dxdy??10dx?2xydy?xx2?1011?111?46(x?x)dx??x5?x7??,22?5357?0101My?????Dx?(x,y)dxdy?y?(x,y)dxdy??1010dx?2xydy?xx22x3?11?111?(x?x)dx??x6?x8??, 22?68?048571Mx?D?dx?2xydy?x?1013(x?x)dx?581?1619?1?.x?x??3?6549?从而 x?MMy?3548, y?MxM?35, 54所求重心为??3535?,?. ?4854?20. 设有一等腰直角三角形薄片,腰长为a,各点处的面密度等于该点到直角顶点的距离的平方,求这薄片的重心.
解:建立直角坐标系如图10-34所示。
图10-34
由已知ρ(x,y)=x+y, 且
M?2
2
???0D?(x,y)dxdy?23?a0dx?3a?x0(x?y)dy?22?a0?23?dxxy?y??3?0?a1a?x
?a[ax?x?a0a013(a?x)]dx?a?y0141?a3144??a.x?x?(a?x)??412?3?062MMx??????Dy?(x,y)dxdy?x?(x,y)dxdy???ydy?dx?(x?y)dx?222??a0a151??yay2?y3?(a?y)3dy?a.??153??151??xax2?x3?(a?x)3dx?a.??153??a?x0yDx(x?y)dy?01从而 x?y?1516aa5?425a
即所求重心为??2?5a,?a?. 5?221. 设均匀薄片(面密度为常数1)所占闭区域D如下,求指定的转动惯量:
227
(1)D:
xa22?yb22?1,求Iy;
92(2)D由抛物线y2?x与直线x=2所围成,求Ix和Iy;
(3)D为矩形闭区域:0≤x≤a, 0≤y≤b,求Ix和Iy. 解:(1)令x=arcosθ ,y=brsinθ,则在此变换下 D:
xa22?yb22?1变化为D?:r≤1,即
0≤r≤1, 0≤θ≤2π, 且所以
Iy???(x,y)?(r,?)?abr,
??Dxdxdy?2??D?arcos?abrdrd??ab?14πab.322232π0cos?d?2?10rdr3ab380(2) 闭区域D如图10-35所示
?2π
(1?cos2?)d??
图10-35
Ix?Iy?x2????Dydxdy?2?dx?02222230ydy?x22236?2027222053x2dx?967725.;
Dxdxdy?2?xdx?030dy?3?2x2dx?(3)Ix???Dydxdy?2?a0dx?ydy?a?ydy?00a0b2b2ab3b,
Iy???Dxdxdy?2?xdx?dy?02?a0bxdx?2ab33.
22. 已知均匀矩形板(面密度为常量ρ)的长和宽分别为b和h,计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量。
解:取形心为原点,取两旋转轴为坐标轴,建立坐标系如图10-36所示.
228
图10-36
bhhIx?Iy???Dy?dxdy?22??2b?2bdx?2h?2y?dy?b?2h?ydy??2hb22112112?bh,
3??Dx?dxdy?2b?2?xdx?2hdy??22?2b?2?hxdx?2?hb.323. 求直线
xa?yb?1与坐标轴围成的三角区域(a>0,b>0)对x轴及坐标原点的转动惯量(面
ρ为常数).
解:所围三角区域D如图10-37所示:
图10-37
Ix?ab3????Dy?dxdy?2?b0?ydy?2a?0ydx?ab?b0aba????ay2?y3?dy??.12b??2b0I0?D(x?y)?dxdy???dy?0b22ba?0y(x?y)dx???2?x2??yx???3?03a?abydy
???0?a3??33?ab2a3?y?2?2dy?(b?a).?ay?y1????12bb???24. 求面密度为常量ρ的匀质半圆环形薄片: R1?y?x?22R2?y,z?0对位于z轴上点M0(0,0,a)(a>0)处单位质量的质点的引力
22F.
解:由对称性知Fy=0,而
229
相关推荐: