第十六章达标检测卷
一、选择题(每题3分,共30分)
1.下列的式子一定是二次根式的是( )
A.a
3
B.a
C.-a
D.a2
2.若二次根式x-5有意义,则x的取值范围在数轴上表示正确的是( )
3.下列二次根式中,最简二次根式是( )
A.25a
B.a+b
2
2
C.
a2
D.0.5
4.下列计算正确的是( )
A.53-23=2 C.3+23=3 5.下列根式:①18;②2;③
相同的是( ) A.①和②
B.②和③
C.③和④
D.①和④
B.22×32=62 D.33÷3=3
3
2;④3,化为最简二次根式后,被开方数
6.11的整数部分是x,小数部分是y,则y(x+11)的值为( )
A.3-11
B.9-311
C.-2
D.2
7.已知a=3+22,b=3-22,则a2b-ab2的值为( )
A.1
B.17
C.42
D.-42
8.已知a,b,c为△ABC的三边长,且a2-2ab+b2+|b-c|=0,则△ABC的
形状是( ) A.等腰三角形 C.直角三角形
B.等边三角形 D.等腰直角三角形
9.已知x,y为实数,且3x+4+y2-6y+9=0.若axy-3x=y,则实数a的值
为( )
1A.4 1B.-4 7C.4 7D.-4
x2-16+16-x2+24
10.已知实数x,y满足:y=,则xy+13的值为( )
x-4
A.0
B.37
C.13
D.5
二、填空题(每题3分,共30分) 11.计算:24-3
2
3=________.
12.若最简二次根式3a-1与2a+3可以合并,则a的值为________. 11
13.已知x-x=6,则x2+x2=________.
14.当x=5-1时,代数式x2+2x+3的值是________.
15.三角形的三边长分别为3,m,5,化简(2-m)2-(m-8)2=________. 16.已知x,y为实数,且y=x2-9-9-x2+4,则x-y的值为________. 17.实数a,b在数轴上的位置如图所示,化简a2-b2+(a-b)2的结果是
________.
(第17题)
18.若实数m满足(m-2)2=m+1,且0<m<3,则m的值为________. y
-x2化简的结果为________. 11111111
20.观察下列式子:1+12+22=12;1+22+32=16;1+32+42=1111
112;……根据此规律,若1+a2+b2=190,则a2+b2的值为________. 19.若xy>0,则二次根式x三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:
(1)(6+8)×3÷32; (2)48÷3-
1
2×12+24;
(3)(3+25)2-(4+5)(4-5);
?1?(4)?-2?-12+(1-2)0-|3-2|. ??
a2-b2?2ab-b2?
?a-?,其中a=5+2,b=5-2. 22.先化简,再求值:a÷
a??
23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+
(c-b-a)2.
-1
1
24.已知a+b=-2,ab=2,求
25.观察下列各式: ①422-5=417. 55-26=________=________;
85=22
5;②33-10=2710=33
10;③44-17=
6417=
ba+
a
b的值.
(1)根据你发现的规律填空:(2)猜想
n-
n
(n≥2,n为自然数)等于什么?并通过计算证实你的猜想. n2+1
26.如图,有一张边长为62 cm的正方形纸板,现将该纸板的四个角剪掉,制
作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,且小正方形的边长为2 cm.求:
(1)剪掉四个角后,制作长方体盒子的纸板的面积; (2)长方体盒子的体积.
(第26题)
27.阅读材料:
小明在学习完二次根式后,发现一些式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了如下探索:
设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,
故a=m2+2n2,b=2mn.
这样小明就找到了把类似a+b2的式子化为完全平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a=________,b=________;
相关推荐: