连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度. (证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′. 由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′; 而F′C″+F′P′+P′C′是点C′,C″之间的折线段, 由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″, 即△P′CF′的周长大于△PCE的周长.) 如答图③所示,连接C′E, ∵C,C′关于直线QE对称,△QCE为等腰直角三角形, ∴△QC′E为等腰直角三角形, ∴△CEC′为等腰直角三角形, ∴点C′的坐标为(4,5); ∵C,C″关于x轴对称,∴点C″的坐标为(﹣1,0). 过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6, 在Rt△C′NC″中,由勾股定理得:C′C″===. . 综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为 25
点评: 本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形、等腰直角三角形、勾股定理、轴对称的性质等重要知识点,涉及考点较多,有一点的难度.本题难点在于第(4)问,如何充分利用轴对称的性质确定△PCF周长最小时的几何图形,是解答本题的关键. 25.(10分)(2013长沙)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为a,b.对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时 ,有m≤y≤n,我们就称此函数是闭区间m,n上的“闭函数”.
(1)反比例函数y?????20132013?上的“闭函数”吗?请判断并说明理由; 是闭区间?1,x(2)若一次函数y?kx?bk?0是闭区间m,n上的“闭函数”,求此函数的解析式;
????(3)若二次函数y?值.
1247x?x?是闭区间?a,b?上的“闭函数”,求实数a,b的55526.(10分)(2013长沙)如图,在平面直角坐标系中,直线y??x?2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点P(a,b)运动时,矩形PMON的面积为定值2. (1)求∠OAB的度数; (2)求证:⊿AOF∽⊿BEO;
(3)当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为S1,⊿OEF的面积为S2.试探究:S1+S2是否存在最小值?若存在,请求出该最
26
小值;若不存在,请说明理由.
yBNFPEOM(第26题) Ax参考答案:
27
28
相关推荐: