a
bbabbabbbaaabab0bbab?abbab0bba0abbaabbr2?r1br4?r3aa?(?1)4?2(b?a)abbabbb a (b?a)0ba?bb0?(b?a)(a?b)a?(a?b)(b?a)3.
(6) 用定义做.考虑行列式的非零项,因每行每列只能取一个元素相乘得行列式的一项,故当第一行取(1,1)位的a1后,第四行只能取(4,4)位的a4,而第二、三行有两种取法a2、a3或
b2、b3.同理第一行取(1,4)位的b1,即有
a100b4
0a2b300b2a30b100a4?(a1a4?b1b4)(a2a3?b2b3)?a1a2a3a4?a1b2b3a4?b1a2a3b4?b1b2b3b4
9. 利用行列式的性质,证明:
ax?byay?bzaz?bx证明
ay?bzaz?bxax?byaz?bxay?bzxzyzxzx. yax?by?(a3?b3)yax?byay?bzaz?bx ay?bzaz?bxax?by
az?bxax?byay?bzxay?bzaz?bxyay?bzaz?bx ?ayaz?bxax?by?bzaz?bxax?by
zax?byay?bzxax?byay?bzxay?bzzyzaz?bx ?a2yaz?bxx?b2zxax?by
zax?byyxyay?bzxyzyzx ?a3yzx?b3zxy
zxyxyz 5
xyzxyz ?a3yzx?b3yzx
zxyzxyxyz ?(a3?b3)yzx?
zxy
10. 试计算n阶行列式
11f(x)?1?1222????1(n?1)(n?1)2?1xx2. ?xn?112n?1?(n?1)n?1解 把行列式按最后一列展开,知f(x)是x的n?1次多项式,故可设 f(x)?a(x?x1)?(x?xn?1)
又在行列式中分别取x?1,2,?n?1时,行列式的值为零,所以1,2,?n?1就是 的n?1个根. f(x)?0 为了确定a,再由原行列式按n列展开的情况知: a为xn?1的代数余子式(?1)Mnn,
2n而Mnn正好是由1,2,?n?1构成的Vandermonde行列式,于是得
f(x)?V2,n?,n?1(1,??(n?2)!n(?3?)!1x?)(x1?)?(2x?)[n?(?2x!?(x1?)?(2x)?n[?(
1)]1)]11. 证明下列等式:
a0(1) Dn??0?a???00?00?10nn?2??a?a;
01aa(2) Dn??0?a0?a???a?a0a0a??(?1)aa(n?1)(n?2)2(n?1)an;
a00?aa?a 6
1?a?1(3) D5?a1?a?100?1???0a1?a?1000a1?a?1000a1?a?1?a?a2?a3?a4?a5;
000x(4) Dn??x?1x?an?1?a0?a1x???an?1xn?1?xn.
a0证明 (1)
a1?an?2a0Dn??010?a???00?010?0arn?ar1a0?01?a2a?00?a???00?010??(?1)00n?10(1?a)2???00?10?0
a?00?a0?n?10?a0??a ?(?1)(1?a2)(?1)1?n?1????(a2?1)an?2?an?an?2. a0?(2)
aaDn??a0c2-ac1c3-ac1a?aa???0?0a?aa00?0c1+c2c1+c3?c1+cn(n?1)a(n?1)a?(n?1)a(n?1)aa?aa???0?0aaa00????1a?a1a???0?0a? aa??(n?1)a?0?aa?a11(n?1)a?10?aa?a10?a1a?a0?a?0?a0?0
????0?a0??(n?1)a(?1)n?1002)
cn-ac1???a001?a??a?
a(?1) ?(n?1) ?(?1)
(3)
(n?1n)?(22)n?1)?(??(an?1)??([(n1?)1nn(?a1n);
7
1?aa000c1a000?11?aa00c1+c2c1+c30`Dc1+c401?aa01+c55?0?11?aa00?11?aa0 00?11?aa00?11?aa000?11?a?a00?11?a按第一列展开,得
1-aa00a000D1-aa01)5?11?aa005?-10-11-aa?(?a)(??11?aa0
00-11-a0?11?aa?D54?a
所以D455?(D3?a)?a?(D3452?a)?a?a ?1?a?a2?a3?a4?a5. (4) 用数学归纳法证明?
当n?2时?
Dx?12?a0x?a?a0?a1x?x2? 命题成立?
1假设对于(n?1)阶行列式命题成立? 即
x?1??Dn?1????an?20?a1x???an?2x?xn?1.
x?1a0a1?an?3x?an?2Dn按第一列展开? 有
x?1x?1?1????xDn????x???(?1)n?1a0x?1x?1a0a1?an?2x?an?1a1a2?an?2x?an?1 ?x(a1?a2x???an?2?1n?1x?xn)?a0
?a0?a1x???an?1n?x1?xn.
因此? 对于n阶行列式命题成立?
12. 用克莱姆法则解方程组
8
0?????1?x0?1??
相关推荐: