2017-2020学年重庆市万州区八年级(上)期末数学试卷
一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内 1.(4分)在下列实数中,无理数是( ) A.
B.
C.
D.0.2020020002
2.(4分)下列运算正确的是( ) A.a5?a4=a20
B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a4
3.(4分)若一个数的平方根等于它本身,则这个数是( ) A.0
B.1
C.0或1 D.0或±1
4.(4分)分解因式3x3﹣12x,结果正确的是( )
A.3x(x﹣2)2 B.3x(x+2)2 C.3x(x2﹣4) D.3x(x﹣2)(x+2) 5.(4分)以下列各组数为边长,不能组成直角三角形的是( ) A.3、4、5 B.7、24、25 C.6、8、10
D.3、5、7
6.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用( )
A.条形统计图 B.折线统计图 C.扇形统计图 D.频数分布统计图
7.(4分)若(x+m)(x﹣8)中不含x的一次项,则m的值为( ) A.8
B.﹣8 C.0
D.8或﹣8
8.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是( )
A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD
9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为( )
A.10cm B.20cm C.5cm D.不能确定
10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是( )
A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48
11.(4分)下面给出五个命题:①若x=﹣1,则x3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有( )
A.4个 B.3个 C.2个 D.1个
12.(4分)因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为( ) A.(x+3)(x﹣4) B.(x+4)(x﹣3) C.(x+6)(x﹣2) D.(x+2)(x﹣6)
二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上
13.(4分)16的平方根是 .
14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= .
15.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 万元.
16.(4分)若直角三角形的两小边为5、12,则第三边为 .
17.(4分)根据(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为 .
18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= .
三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上. 19.(8分)计算:(π﹣2
)0+|
﹣3|﹣
+(﹣)﹣2.
20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.
四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.
21.(10分)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.
22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题: (1)调查的总人数为 ; (2)补全条形统计图;
(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?
23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书
CA⊥AB于A,DB⊥AB于B.室,本社区有两所学校所在的位置在点C和点D处,已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF的延长线于点D. (1)求证:AE=CD; (2)若AB=4
,求BD的长.
五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上
25.(10分)若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.
(1)请你写一个最小的三位“丰利数”是 ,并判断20 “丰利数”.(填是或不是);
(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.
26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F. (1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.
(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.
(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明,
相关推荐: