如图1,当点D在线段BC上时,
①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上) (2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.
(五)、本题11分
25.如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6. (1)求该抛物线的解析式;
(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.
参考答案 一、(共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一个是符合题目要求)
1.下列各数中最小的是( ) A.0 B.﹣3 C.﹣ D.1 【考点】实数大小比较.
【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答. 【解答】解:因为在A、B、C、D四个选项中只有B、C为负数,故应从B、C中选择; 又因为|﹣3|>|﹣|=2, 所以﹣3<﹣, 故选B. 2.在“十二?五”期间,达州市经济保持稳步增长,地区生产总值约由819亿元增加到1351亿元,年均增长约10%,将1351亿元用科学记数法表示应为( ) A.1.351×1011 B.13.51×1012 C.1.351×1013 D.0.1351× 【考点】科学记数法—表示较大的数.
n
【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1351亿有12位,所以可以确定n=12﹣1=11. 【解答】解:1351亿=135 100 000 000=1.351×1011. 故选A.
3.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )
A.遇 B.见 C.未 D.来 【考点】几何体的展开图.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “遇”与“的”是相对面, “见”与“未”是相对面, “你”与“来”是相对面. 故选D. 4.不等式组
的解集在数轴上表示正确的是( )
A.
C.
B.
D.
【考点】解一元一次不等式组;在数轴上表示不等式的解集.
【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.
【解答】解:由①得,x≤3; 由②得,x>﹣;
所以,不等式组的解集为﹣<x≤3. 故选A.
5.下列说法中不正确的是( ) A.函数y=2x的图象经过原点 B.函数y=的图象位于第一、三象限 C.函数y=3x﹣1的图象不经过第二象限 D.函数y=﹣的值随x的值的增大而增大
【考点】正比例函数的性质;一次函数的性质;反比例函数的性质. 【分析】分别利用正比例函数以及反比例函数的定义分析得出答案. 【解答】解:A、函数y=2x的图象经过原点,正确,不合题意; B、函数y=的图象位于第一、三象限,正确,不合题意; C、函数y=3x﹣1的图象不经过第二象限,正确,不合题意;
D、函数y=﹣的值,在每个象限内,y随x的值的增大而增大,故错误,符合题意. 故选:D.
6.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为( )
A. B. C. D.
【考点】勾股定理的应用.
【分析】从点A,B,C,D中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.
【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,
∴所构成的三角形恰好是直角三角形的概率为.
故选D. 7.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )
A. B.2 C. D.
【考点】圆周角定理;锐角三角函数的定义.
【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC=∠CDO,等量代换即可. 【解答】解:作直径CD, 在Rt△OCD中,CD=6,OC=2, 则OD=tan∠CDO=
=
=4,
,
由圆周角定理得,∠OBC=∠CDO, 则tan∠OBC=故选:C.
,
8.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( )
A.25 B.33 C.34 D.50 【考点】规律型:图形的变化类.
【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.
【解答】解:∵第一次操作后,三角形共有4个; 第二次操作后,三角形共有4+3=7个; 第三次操作后,三角形共有4+3+3=10个; …
∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个; 当3n+1=100时,解得:n=33, 故选:B.
9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为( )
相关推荐: