(2)解:作DM⊥AB于M,
∵半圆O的直径为10,sin∠BAC=, ∴BC=AB?sin∠BAC=6, ∴AC=∵OE⊥AC,
∴AD=AC=4,OD=BC=3, ∵sin∠MAD=∴DM=
,AM=
=,
=
=
,BM=AB﹣AM=
,
=8,
∵DM∥AE, ∴
=
, .
∴AF=
(四)、本题2个小题,共19分
23.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表: 原进价(元/张) 零售价(元/张) 成套售价(元/套) 餐桌 a 270 500元 餐椅 a﹣110 70 已知用600元购进的餐桌数量与用160元购进的餐椅数量相同. (1)求表中a的值; (2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少? 【考点】一次函数的应用;一元一次不等式组的应用. 【分析】(1)根据餐桌和餐椅数量相等列出方程求解即可;
(2)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;
(3)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论. 【解答】解:(1)由题意得
=
,
解得a=150,
经检验,a=150是原分式方程的解;
(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元. 由题意得:x+5x+20≤200, 解得:x≤30. ∵a=150,
∴餐桌的进价为150元/张,餐椅的进价为40元/张. 依题意可知:
W=x?+x?+(5x+20﹣x?4)?(70﹣40)=245x+600,
∵k=245>0,
∴W关于x的函数单调递增,
∴当x=30时,W取最大值,最大值为7950.
故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元. (3)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元, 设本次成套销售量为m套.
依题意得:m+(30﹣m)×+×(70﹣50)=7950﹣2250, 即6700﹣50m=5700,解得:m=20. 答:本次成套的销售量为20套.
24.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF. (1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: 垂直 .
②BC,CD,CF之间的数量关系为: BC=CD+CF ;(将结论直接写在横线上) (2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.
【考点】四边形综合题. 【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;
(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论
(3)根据等腰直角三角形的性质得到BC=
AB=4,AH=BC=2,求得DH=3,根据正方形的
性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论. 【解答】解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°, ∴∠BAD=∠CAF, 在△DAB与△FAC中,
∴△DAB≌△FAC, ∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD; 故答案为:垂直; ②△DAB≌△FAC, ∴CF=BD, ∵BC=BD+CD, ∴BC=CF+CD;
故答案为:BC=CF+CD;
(2)成立,
∵正方形ADEF中,AD=AF, ∵∠BAC=∠DAF=90°, ∴∠BAD=∠CAF, 在△DAB与△FAC中,
, ,
∴△DAB≌△FAC, ∴∠B=∠ACF,CF=BD
∴∠ACB+∠ACF=90°,即CF⊥BD; ∵BC=BD+CD, ∴BC=CF+CD;
(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N, ∵∠BAC=90°,AB=AC, ∴BC=
AB=4,AH=BC=2,
∴CD=BC=1,CH=BC=2,
∴DH=3,
由(2)证得BC⊥CF,CF=BD=5, ∵四边形ADEF是正方形, ∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF, ∴四边形CMEN是矩形, ∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°, ∴∠ADH=∠DEM, 在△ADH与△DEM中,∴△ADH≌△DEM, ∴EM=DH=3,DM=AH=2, ∴CN=EM=3,EN=CM=3,
,
∵∠ABC=45°, ∴∠BGC=45°,
∴△BCG是等腰直角三角形, ∴CG=BC=4, ∴GN=1, ∴EG==.
(五)、本题11分
25.如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6. (1)求该抛物线的解析式;
(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.
【考点】二次函数综合题;二次函数的性质;待定系数法求二次函数解析式;三角形的面积;平行四边形的性质. 【分析】(1)根据三角形的面积公式求出m的值,结合点C的坐标利用待定系数法即可求出a值,从而得出结论;
(2)假设存在.过点P作y轴的平行线,交x轴与点M,交直线AC于点N.根据抛物线的解析式找出点A的坐标.设直线AC的解析式为y=kx+b,点P的坐标为(n,﹣n2+2n+6)(﹣2<n<4),由点A、C的坐标利用待定系数法即可求出直线AC的解析式,代入x=n,即可得出点N的坐标,利用三角形的面积公式即可得出S△ACP关于n的一元二次函数,根据二次函数的性质即可解决最值问题;
(3)根据直尺的摆放方式可设出直线CD的解析式为y=﹣x+c,由点C的坐标利用待定系数法即可得出直线CD的解析式,联立直线CD的解析式与抛物线的解析式成方程组,解方程组即可求出点D的坐标,令直线CD的解析式中y=0,求出x值即可得出点E的坐标,结合线段EF的长度即可找出点F的坐标,设出点M的坐标,结合平行四边形的性质以及C、D点坐
相关推荐: