(Ⅱ)设A(x1,y1),B(x2,y2). (ⅰ)当直线 AB与x轴重合时,
OA?OB?2a2,AB?4a2(a2?1),因此,恒有OA?OB?AB. (ⅱ)当直线AB不与x轴重合时,
222222
x2y2 设直线AB的方程为:x?my?1,代入2?2?1,
ab 整理得(a?bm)y?2bmy?b?ab?0,
222222222b2mb2?a2b2,y1y2?2 所以y1?y2?2 2222a?bma?bm 因为恒有OA?OB?AB,所以?AOB恒为钝角.
222uuruuur 即OAgOB?(x1,y1)g(x2,y2)?x1x2?y1y2?0恒成立.
x1x2?y1y2?(my1?1)(my2?1)?y1y2?(m2?1)y1y2?m(y1?y2)?1
(m2?1)(b2?a2b2)2b2m2??2?122222a?bma?bm 2222222?mab?b?ab?a??0.a2?b2m2
又a2+b2m2>0,所以-m2a2b2+b2-a2b2+a2<0对m?R恒成立, 即a2b2m2> a2 -a2b2+b2对m?R恒成立.
当m?R时,a2b2m2最小值为0,所以a2- a2b2+b2<0. a2 因为a>0,b>0,所以a 解法二: (Ⅰ)同解法一, (Ⅱ)解:(i)当直线l垂直于x轴时, 1y2b2(a2?1)2x=1代入2?2?1,yA?. aba2 2a?1因为恒有|OA|2+|OB|2<|AB|2, 2(1+yA2)<4 yA2, yA2>1,即>1, a解得a> 1?51?51?5或a<(舍去),即a>. 222(ii)当直线l不垂直于x轴时,设A(x1, y1), B(x2,y2). x2y2设直线AB的方程为y=k(x-1)代入2?2?1, ab得(b2+a2k2)x2-2a2k2x+ a2 k2- a2 b2=0, 2a2k2a2k2?a2b2故x1+x2=2,x2x2?2. b?a2k2b?a2k2因为恒有|OA|2+|OB|2<|AB|2, 所以x21+y21+ x22+ y22<( x2-x1)2+(y2-y1)2, 得x1x2+ y1y2<0恒成立. x1x2+ y1y2= x1x2+k2(x1-1) (x2-1)=(1+k2) x1x2-k2(x1+x2)+ k2 2222222222222ak?ab2ak(a?ab?b)k?ab22?k?k?=(1+k2)2. 22222222b?akb?akb?ak由题意得(a2- a2 b2+b2)k2- a2 b2<0对k?R恒成立. ①当a2- a2 b2+b2>0时,不合题意; ②当a2- a2 b2+b2=0时,a= 1?5; 2③当a2- a2 b2+b2<0时,a2- a2(a2-1)+ (a2-1)<0,a4- 3a2 +1>0, 解得a2>3?53?51?51?5或a2>(舍去),a>,因此a?. 22221?5,+?). 2综合(i)(ii),a的取值范围为( (22)本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一: (I)因为f(x)=ln(1+x)-x,所以函数定义域为(-1,+?),且f′(x)=由f′(x)>0得-1 1?x-1=. 1?x1?xan?2(an?2?an)?n?2(n?2?n)?n?22 n?2?n > 2n?2?1. n?2?n?2221?1?n?2?1, 又limn?2(n?2?n)?limx??因此c<1,即实数c的取值范围是(-?,1]. (II)由(i)知1?2n?1?2n?1. 2n?1因为[ 1?3?5?K?(2n?1)2 ] 2?4?6??K?(2n)?1?33?55?7(2n?1)(2n?1)11???L??<, 2n?12n?1234262(2n)21g3g5gLg(2n?1)1<<2n?1?2n?1(n?N*), 2g4g6gLg(2n)2n?1所以 则 11g31g3g5gLg(2n?1)??L?< 22g42g4g6gLg(2n)3?1?5?3?L?2a?1?2n?1?2n?1?1.即aaLa2n?1a1a1a3??L?13<a2a2ana2a4La2n 2an?1?1(n?N*) 解法二: (Ⅰ)同解法一. (Ⅱ)因为f(x)在?0,n?上是减函数,所以bn?f(n)?ln(1?n)?n, 则an?ln(1?n)?bn?ln(1?n)?ln(1?n)?n?n. (i)因为can?2pan?2?an对n∈N*恒成立.所以cn?2pn?2?n对n∈ N*恒成立. 则cpn?2?n2?2n对n∈N*恒成立. 设g(n)?n?2?n2?2n, n∈N*,则c<g(n)对n∈N*恒成立. 考虑g(x)?x?2?x2?2x,x??1,???. 1?1x?1x?1 因为g′=0, (x)?1?(x2?2x)2 g (2x?2)?1?p1?22x?1x?2x 所以g(x)在?1,???内是减函数;则当n∈N*时,g(n)随n的增大而减小, 又因为limg(n)?lim(n?2?n?2n)?limx??x??22n?4n?2?n?2n22??limx??4nx??1?22?1?nn=1. 所以对一切n?N,g(n)?1.因此c≤1,即实数c的取值范围是(-∞,1]. (ⅱ) 由(ⅰ)知*1?2n?1?2n?1. 2n?11g3g5gLg(2n?1)?2g4g6gLg(2n)12n?1(n?N?). 下面用数学归纳法证明不等式 ①当n=1时,左边= 11,右边=,左边<右边.不等式成立. 231g3g5gLg(2k?1)?2g4g6gLg(2k)12n?1. ②假设当n=k时,不等式成立.即 当n=k+1时, 1?3?5?(2k-1)(2k?1)12k?12k?12k?12k?3<???2?4?6?(2k)(2k?2)2k?22k?12k?22k?2?12k?3, =4k2?8k?34k2?8k?4?12k?3<12k?3?12(k?1)?1 即n=k+1时,不等式成立 综合①、②得,不等式1?3?5???(2n?1)<1(n?N*)成立. 2?4?6???(2n)2n?1所以1?3?5???(2n?1)<2n?1?2n?1 2?4?6???(2n)11?31?3?5???(2n?1) ?+?+22?42?4?6???(2n)<3-1+5-3=?+2n?1?2n?1?1. 即a1?a1a3??+a1a3?a2n?1<2an?1?1(n?N*). a2a2a4a2a4?a2n
相关推荐: