【新教材2020版】 教学资料范本 2020高考数学一轮总复习第10章概率与统计第一节随机事件及其概率AB卷文1 编 辑:__________________ 时 间:__________________ 本资料系本人收集整编,以VIP专享文档的呈现方式与各位同仁分享,欢迎下载收藏,如有侵权,望告知删除!1 / 8 【新教材2020版】 【最新】20xx年高考数学一轮总复习第10章概率与统计第一节随机事件及其概率AB卷文1 1.(20xx·新课标全国Ⅰ,3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A. C. B. D. 1613解析 4个取2个有6种方法,差为2的只有1和3,2和4.故P==. 答案 B 2.(20xx·新课标全国Ⅱ,18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 保费 0 0.85a 1 2 1.25a 3 1.5a 4 1.75a ≥5 2a a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 频数 0 60 1 50 2 30 3 30 4 20 ≥5 10 (1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值; 本资料系本人收集整编,以VIP专享文档的呈现方式与各位同仁分享,欢迎下载收藏,如有侵权,望告知删除!2 / 8 【新教材2020版】 (2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值; (3)求续保人本年度的平均保费的估计值. 解 (1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55. (2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3, 故P(B)的估计值为0.3. (3)由所给数据得 保费 频率 0.85a 0.30 a 0.25 1.25a 0.15 1.5a 0.15 1.75a 0.10 2a 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,续保人本年度平均保费的估计值为1.192 5a. 1.(20xx·广东,7)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A.0.4 C.0.8 B.0.6 D.1 解析 5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,结果有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,则其概率为p==0.6. 答案 B 本资料系本人收集整编,以VIP专享文档的呈现方式与各位同仁分享,欢迎下载收藏,如有侵权,望告知删除!3 / 8 【新教材2020版】 2.(20xx·江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 解析 这两只球颜色相同的概率为,故两只球颜色不同的概率为1-=. 5答案 63.(20xx·湖南,16)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1、b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖. (1)用球的标号列出所有可能的摸出结果; (2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由. 解 (1)所有可能结果为:(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2);(B,a1),(B,a2),(B,b1),(B,b2)共计12种结果. (2)不正确,理由如下:设“中奖”为事件A,则P(A)==, P()=1-=,P(A)<P(),故此种说法不正确. 4.(20xx·陕西,19)随机抽取一个年份,对××市该年4月份的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 本资料系本人收集整编,以VIP专享文档的呈现方式与各位同仁分享,欢迎下载收藏,如有侵权,望告知删除!4 / 8 【新教材2020版】 天气 日期 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 (1)在4月份任取一天,估计××市在该天不下雨的概率; (2)××市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率. 解 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,××市不下雨的概率为P==. (2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为, 以频率估计概率,运动会期间不下雨的概率为. 5.(20xx·北京,17)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买. 商品 顾客人数 100 217 200 300 85 98 甲 √ × √ √ √ × 乙 × √ √ × × √ 丙 √ × √ √ × × 丁 √ √ × × × × 本资料系本人收集整编,以VIP专享文档的呈现方式与各位同仁分享,欢迎下载收藏,如有侵权,望告知删除!5 / 8
相关推荐: