第一范文网 - 专业文章范例文档资料分享平台

因式分解(竞赛题)含答案

来源:用户分享 时间:2025/5/22 1:42:32 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.

因式分解

序号 公式 记忆特征 (1) 常数项两数积 (2) 一次项系数两数和 (3) 二次项系数为1 x2+(a + b)x+ab = (x+a)(x+b) 1 (十字相乘法) a2-b2 = (a-b)(a+b) 2 (平方差公式) a2+2ab+b2 = (a+b)2 3 a2-2ab+b2 = (a-b)2 (完全平方公式) a2+b2+c2+2ab+2ac+2bc = (a+b+c)2 4 (完全平方公式扩展) a3+3a2b+3ab2+b3 = (a+b)3 5 a3-3a2b-3ab2+b3 = (a-b)3 (完全立方公式) a3+b3 = (a+b)(a2-ab+b2) 6 33a-b = (a-b)(a2+ab+b2) 7 a3+b3+c3-3abc = (a+b+c)(a2+b2+c2-ab-ac-bc) (1) 三数平方和 (2) 两两积的2倍 对照完全平方公式相互加强记忆 (1) 近似完全平方公式 (2) 缺项之完全立方公式 (a+b)[(a+b)2-3ab]=(a+b)3-3ab(a+b) (a-b)[(a+b)2+3ab]=(a-b)3+3ab(a+b) 对照公式4相互加强记忆 短差长和; a指数逐项递减1; b指数逐项递增1; 长式每项指数和恒等于 n-1。 短式变加长式加减相间; a指数逐项递减1; b指数逐项递增1; 每项符号b指数决定偶加奇减。 (1) an-bn = (a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1) n=整数 (2) 8 (平方差公式扩展) (3) (4) (1) an-bn = (a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1) n=偶数 (2) 9 (立方差公式扩展) (3) (4) an+bn = (a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1) n=奇数 10 对比公式9的异同 (立方和公式扩展) 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4; (2)x3-8y3-z3-6xyz; 解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4) =-2xn-1yn[(x2n)2-2x2ny2+(y2)2] =-2xn-1yn(x2n-y2)2 =-2xn-1yn(xn-y)2(xn+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

1文档来源为:从网络收集整理.word版本可编辑.

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3

的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为 a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3

≥3abc,而且,当且仅当a=b=c时,等号成立. 如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论. ※※变式练习

1分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解. 解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1), 所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

3

1文档来源为:从网络收集整理.word版本可编辑.

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.

例3 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x. 原式=x-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x+x-8).

解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种. ※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1

2

3

1文档来源为:从网络收集整理.word版本可编辑.

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)+2(x+1)(x-1)+(x-1)]-(x-1) =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到

拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5)

4

2

2

4

2

2

1文档来源为:从网络收集整理.word版本可编辑.

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合. 解 原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9)

=(2x+5x+12)(2x+5x-7) =(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础. ※※变式练习 1.分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法

分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式

(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.

例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,

于是上式可变形为

2x2-(5+7y)x-(22y2-35y+3),

可以看作是关于x的二次三项式.

对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为 即:-22y2+35y-3=(2y-3)(-11y+1).

22

2

2

1文档来源为:从网络收集整理.word版本可编辑.

搜索更多关于: 因式分解(竞赛题)含答案 的文档
因式分解(竞赛题)含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7k3kp9bozr207lq1bbd16zh7s4eqd201d0a_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top