由椭圆定义得2?2c?3?2a,∴c?32a, x2y2又椭圆C:a2?b2?1(a?b?0)过点A(0,1),
∴b?1,∴c2?a2?b2?a2?1?34a2,解得a?2,c?3, ∴椭圆C的标准方程为x24?y2?1. ?y?k(x?2),(2)设P(x,y?1,y1),Q(x22),联立方程?x2??4?y2?1, 整理得(1?4k2)x2?16k2x?(16k2?4)?0,
直线l:y?k(x?2)恒过点(?2,0),此点为椭圆的左顶点,∴x1??2,x?16k2由方程的根与系数关系可得1?x2?1?4k2,② 可得y1?y2?k(x1?2)?k(x2?2)?k(x1?x2)?4k,③
由①②③,解得x2?8k242?1?4k2,y2?k1?4k2, 由点A在以PQ为直径的圆外,得?PAQ为锐角,即???AP?????AQ??0,
由???AP??(?2,?1),???AQ??(x2,y2?1),
∴???AP?????AQ???2x4?16k22?y2?1?0,即1?4k2?4k1?4k2?1?0, 整理得20k2?4k?3?0,解得k??310或k?12. ∴实数k的取值范围是(??,?310)?(12,??).
21.解:(1)由已知得 x?0,f'(x)?11?xx?1?x,
当x?1时,由f'(x)?0,得0?x?1;由f'(x)?0,得 x?1, 所以函数f(x)的单调递增区间为(0,1),单调递减区间为(1,??).
y1?0,①
(2)因为g(x)?xf(x)?1211x?2x?x(lnx?x?1)?x2?2x?xlnx?x2?x, 222则g'(x)?lnx?1?x?1?lnx?x?2?f(x)?3,
由(1)可知,函数g'(x)在(0,1)上单调递增,在(1,??)上单调递减. 又因为g'(111)??2??2???0,g'(1)?1?0, e2e2e2所以g'(x)在(0,1)上有且只有一个零点x1,
又在(0,x1)上g'(x)?0,g(x)在(0,x1)上单调递减,在(x1,1)上g'(x)?0,g(x)在(x1,1)上单调递增,
所以x1为极值点,此时m?0,
又g'(3)?ln3?1?0,g'(4)?2ln2?2?0,所以g'(x)在(3,4)上有且只有一个零点x2. 因在(3,x2)上g'(x)?0,g(x)在(3,x2)上单调递增;在(x2,4)上g'(x)?0,g(x)在(x2,4)上单调递减,
所以x2为极值点,此时m?3. 综上所述,m?0或m?3.
222.解:(1)由??22cos(??)得??2cos??2sin?,所以??2?cos??2?sin?,
?4将???cos??x,代入到x2?y2?2x?2y,即(x?1)2?(y?1)2?2,
??sin??y,22所以C2的直角坐标方程为(x?1)?(y?1)?2,表示以(1,1)为圆心,2为半径的圆.
os?,?x?tc(2)将?代入(x?1)2?(y?1)2?2,整理得t2?(2cos??4sin?)t?3?0,
y??1?tsin??设A,B对应的参数分别为t1、t2,则t1、t2是方程t?(2cos??4sin?)t?3?0的两根, 所以t1?t2?2cos??4sin?,因为|MN|?2,所以|所以1?sin22t1?t2|?2,所以cos??2sin??2, 2??4(1?sin?)2,所以(5sin??3)(sin??1)?0,
3或sin??1. 5所以sin??
??2x?1,x?0,?23.解:(1)由f(x)??1,0?x?1,
?2x?1,x?1.?得f(x)min?1,要使f(x)?|m?1|恒成立,
只要1?|m?1|,即0?m?2,实数m的最大值为2. (2)由(1)知a?b?2,又a?b?2ab,故ab?1;
2222(a?b)2?4a2b2?a2?b2?2ab?4a2b2?2?2ab?4a2b2??2(ab?1)(2ab?1),
∵0?ab?1,∴(a?b)2?4a2b2??2(ab?1)(2ab?1)?0,∴a?b?2ab.
相关推荐: