85、用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)的问题。
86、平面镶嵌的条件:
①拼接在同一个点的各个角的和恰好等于3600; ②相邻的多边形有公共边。
87、如果用一种多边形进行镶嵌,能镶嵌成一个平面图案的是任意三角形、任意四边形和正六边形。
第八章 二元一次方程组 8.1二元一次方程组
88、含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程。
89、把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。(①共有两个未知数;②每个方程都是一次方程。)
90、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
(特点:①一对数值;②无数个解。)
91、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元——二元一次方程组的解法
92、将未知数的个数有多化少、逐一解决的思想,叫做消元思想。 93、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
94、用代入消元法解二元一次方程组的一般步骤:
①变形:选择其中一个方程,把它变形为用含有一个未知数的代数式表示另一个未知数的形式;
②代入求解:把变形后的另一个方程带入另一个方程中,消元后求出未知数的值;
③回代求解:把求得的未知数的值代入到变形的方程中,求出另一个未
95、列二元一次方程组解决实际问题的一般步骤: ①弄清题意,找出两个等量关系; ②设未知数;
③根据等量关系,列出方程组; ④解方程组; ⑤写答。
96、两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。
97、两方程相加减前,应先使要消去的未知数的系数相反或相等。 98、用加减消元法解二元一次方程组的一般步骤: ①变形;②加减求解;③回代求解;④写解。 99、何时选用代入消元法?何时选用加减消元法?
①当一个方程中某个未知数的系数绝对值是1时,用代入法比较简便;
②当两个未知数在两个方程中的系数绝对值相等或成整数倍时,用加减法比较简便。
8.4三元一次方程组解法举例
100、在方程组中含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组。
第九章 不等式与不等式组 9.1.1不等式及其解集
101、用“<”或“>”号表示大小关系的式子叫做不等式。 (有些不等式中含有未知数,有些不等式中不含未知数。) 102、不等式的符号统称不等号,有“>”“<” “≠”. 其中“≤” “≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。
103、使不等式成立的未知数的值叫做不等式的解。
104、一个含有未知数的不等式的所有的解,组成这个不等式的解集。
105、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。
相关推荐: