【解答】解:作DE⊥AB于E点,作AF⊥DE于F点,如图设DE=xm,CE=2.4xm,由勾股定理,得 x2+(2.4x)2=1952, 解得x≈75m,
DE=75m,CE=2.4x=180m, EB=BC﹣CE=306﹣180=126m. ∵AF∥DG, ∴∠1=∠ADG=20°, tan∠1=tan∠ADG=AF=EB=126m, tan∠1=
=0.364,
=0.364.
,
DF=0.364AF=0.364×126=45.9, AB=FE=DE﹣DF=75﹣45.9≈29.1m, 故选:A.
【点评】本题考查了解直角三角形,利用坡度及勾股定理得出DE,CE的长是解题关键. 12.(4分)(2017?重庆)若数a使关于x的不等式组且使关于y的分式方程A.3
B.1
C.0
+D.﹣3
有且仅有四个整数解,
=2有非负数解,则所有满足条件的整数a的值之和是( )
【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出﹣4<a≤3,再解分式方程
+
=2,根据分式方程有非负数解,得到a≥﹣2且a≠2,进而得到满足条件的整数a
的值之和.
【解答】解:解不等式组
∵不等式组有且仅有四个整数解, ∴﹣1≤﹣
<0,
,可得
,
∴﹣4<a≤3,
解分式方程+=2,可得y=(a+2),
又∵分式方程有非负数解, ∴y≥0,且y≠2,
即(a+2)≥0,(a+2)≠2, 解得a≥﹣2且a≠2, ∴﹣2≤a≤3,且a≠2,
∴满足条件的整数a的值为﹣2,﹣1,0,1,3, ∴满足条件的整数a的值之和是1. 故选:B.
【点评】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解. 二、填空题(本大题共6小题,每小题4分,共24分)
13.(4分)(2017?重庆)据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为 1.43×107 .
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数. 【解答】解:14300000=1.43×107, 故答案为:1.43×107.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 14.(4分)(2017?重庆)计算:|﹣3|+(﹣4)0= 4 .
【分析】分别计算﹣3的绝对值和(﹣4)的0次幂,然后把结果求和. 【解答】原式=3+1 =4.
【点评】本题考查了绝对值的意义和零指数幂.a0=1(a≠0).
15.(4分)(2017?重庆)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC= 80 度.
【分析】直接根据圆周角定理即可得出结论.
【解答】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°, ∴∠AOC=2∠ABC=80°. 故答案为:80.
【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
16.(4分)(2017?重庆)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是 183 个.
【分析】把这组数据从小到大排列,处于中间位置的数就是这组数据的中位数.
【解答】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.
故答案是:183.
【点评】此题考查了中位数和折线统计图,中位数是将一组数据从小到大(或从大到小)重
新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
17.(4分)(2017?重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需 78 分钟到达终点B.
【分析】根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.
【解答】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟, 甲的速度是1÷6=千米/分钟,
由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得 10x+16×=16, 解得x=千米/分钟,
相遇后乙到达A站还需(16×)÷=2分钟, 相遇后甲到达B站还需(10×)÷=80分钟, 当乙到达终点A时,甲还需80﹣2=78分钟到达终点B, 故答案为:78.
【点评】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键. 18.(4分)(2017?重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是
.
【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=
,PD=
=3,如图
2,由平行相似证明△DGC∽△FGA,列比例式可得FG和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则得EN=
,从而计算出△EMN各边的长,相加可得周长.
,
解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同. 解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论. 【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE, ∵DC∥AB, ∴PQ⊥AB,
∵四边形ABCD是正方形, ∴∠ACD=45°,
∴△PEC是等腰直角三角形, ∴PE=PC,
设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x, ∴PD=EQ,
∵∠DPE=∠EQF=90°,∠PED=∠EFQ, ∴△DPE≌△EQF, ∴DE=EF,
易证明△DEC≌△BEC, ∴DE=BE, ∴EF=BE,
相关推荐: