?0,t?0?t,0?t?1(2)f(t)=r(t)-2r(t-1)+r(t-2)= ? ??2?t,1?t?2??0,t?2F(t) 1 0 1 2 t
(3) f(t)=ε(t)r(2-t) 解:f(t)=??2?t,0?t?2
?0,t?0或t?2y 2 0 2 x
?0,t?0?(4)f(t)=r(t)?(2-t)= ?T,0?t?2
?0,t?2?F(t) 2 0 1 2 t
(5) f(t)=r(2t)ε(2-t)
?2t,0?t?2解:f(t)=2t·ε(2t)ε(2-t)=?
0,t?2或t?0?y 4 0 2 x
(6)f(t)=sin(?t)[? (t)-?(t-1)]
?0,t?0? = ?sin(?t),0?t?1
?0,t?1?F (t) 1 0 1 t (7) f(t)=sinπ(t-1)[ε(2-t)-ε(-t)]
Y 0 1 2 X
?0,k?0?(8) f(k)=k[?(k)-?(k-5)]= ?k,0?k?5
?0,k?5?F(k) 3 1 k 0 1 2 3
(9)f(k)=2-kε(k)
?k??2,k?0解:由题意可得f(k)= ?
??0,k?0
Y 1 1/2 1/4 1/8 0 1 2 3 X
(10) f(k)=2-(k-2)?(k-2)=
F(k)
?2?(k?2),k?2 ??0,k?21 1 21 40 1 3 4 k (11) f(k)=sin(
k?)[ε(k)-ε(k-7)] 6
Y 1 1/2 32 0 1 2 3 4 5 x
k??2,0?k?3(12) f(k)=2[?(3-k)-?(-k)]=?
??0,k?3或k?0 k
F(k) 4 2 0 1 2 3 k
1.3 解:(1) f(t)=2?(t+1)- ?(t-1)- ?(t-2)
(2)f(t)=(t+1)[?(t+1) ?(t-1)]-(t-3)[ ?(t-1)-?(t-3)] (3) f(t)=10sin(?t)[?(t)-?(t-1)]
(4) f(t) =?(-t-2)+()2t+5[?(t+2)-?(t-1)]+(t+1)[ ?(t+1)-?(t-1) ]?(t-1) 1.4 解: (a) f(k)= ?(k+2) (b) f(k)= ?(k-3)-?(k-7)
(c) f(k) =?(-k+2)
(d) f(k)=(-1)k?(k) 1.5 解:(1) 由于2 ?3?3?10=为有理数,所以f1(k)cos(k)是周期序列,
553
相关推荐: