第一范文网 - 专业文章范例文档资料分享平台

新课标数学核心素养 衔接预科班人教版七年级上册 第4章几何图形初步 课时 直线、射线、线段 同步 含答案

来源:用户分享 时间:2025/6/1 13:56:23 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

人教版七年级数学 2018年7月

最新课标 核心素养 预科同步练

直线、射线、线段

1.下列说法中错误的是( ) A.过一点可以作无数条直线 B.过已知三点可以画一条直线 C.一条直线通过无数个点 D.两点确定一条直线

2.射线OA,射线OB表示同一条射线,下面正确的是( )

3.图中共有 条线段.

4.看图填空:

(1)点C在直线AB ;

(2)点O在直线BD ,点O是直线 与直线 的交点; (3)过点A的直线共有 条,它们是 . 5.

如图所示,在线段AB上任取D,E,C三个点,则这个图中共有 条线段.

6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.

7.按下列语句画出图形.

(1)直线l经过A,B,C三点,点C在点A与点B之间; (2)经过点O的三条直线a,b,c; (3)两条直线AB与CD相交于点P;

(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.

★8.阅读下表:

线段AB上的点数 图例 n(包括A,B两点) 3 4 5 6 3=2+1 6=3+2+1 10=4+3+2+1 15=5+4+3+2+1 线段总条数N

解答下列问题:

(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?

(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票? ★9.

如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有 个交点;如果在这个平面内再画第4条直线l4,那么这4条直线最多可有 个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有 个交点.(用含n的式子表示)

参考答案

能力提升

1.B 过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.

2.B 射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上. 3.10

4.(1)外 (2)上 AC BD (3)3 直线AD、直线AB、直线AC 这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达. 5.10 只要有一个端点不相同,就是不同的线段. 6.解:经过两点有且只有一条直线.

7.解:(1)

(2)

(3)

(4)

-

8.解:(1)N=1+2+3+…+(n-1)= .

-

=10条线段,即

(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有

有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票. 创新应用

-

9.3 6 通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点

1+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)= (个).

-

新课标数学核心素养 衔接预科班人教版七年级上册 第4章几何图形初步 课时 直线、射线、线段 同步 含答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7lf0n454vt036aw5tvxo0daes3y38300x41_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top