6
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a (三)分数混合运算:同整数。 (四)分数除法应用题
1、分数乘除法应用题的对比
3①已知单位“1”的量用乘法。例:甲是乙的,乙是25,求甲是多少?
5即:甲=乙×
33 —→ 25×=15
553,甲是15,求乙是多少? 5②未知单位“1”的量用除法(或方程)。例: 甲是乙的
即:甲=乙×
333 —→ 15÷=25 (建议列方程答) x=25 5552、分数应用题基本数量关系
(1)甲是乙的几分之几?
33甲=乙×几分之几 (例:甲是15的,求甲是多少?15×=9)
5533乙=甲÷几分之几 (例:9是乙的,求乙是多少?9÷=15)
553几分之几=甲÷乙 (例:9是15的几分之几?9÷15=)
5(2)甲比乙多(少)几分之几?
差15?962(例:9比15少几分之几?(15-9)÷15===)
15155乙B.方法2:先求甲是乙的几分之几,再与1相比。
甲5152①多几分之几是:-1 (例: 15比9多几分之几?15÷9=-1=-1=)
339乙甲329②少几分之几是:1- (例:9比15少几分之几?1-9÷15=1-=1-=)
1555乙 (3)甲比乙多(少)几分之几,求乙是多少?
几乙=甲÷(1+ )
几322例:9比乙少,求乙是多少?9÷(1-)=9÷=15
555225例:15比乙多,求乙是多少?15÷(1+)=15÷=9
333◆画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。 (2)分析数量关系。 (3)找等量关系。 (4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
A.方法1:差÷乙=
第四单元 比
7
1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0. 例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)
2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。 3、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。
注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 (二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。 3.化简比: (2)用求比值的方法。
注意: 最后结果要写成比的形式。如: 15∶10 = 15÷10 = 3/2 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。 这种方法通常叫做按比例分配.
(一)比的意义:两个数的比表示两个数相除。
1、比式中,比号(∶)前面的数叫比的前项,比号后面的项叫做比的后项,比号相当于除号,比的前项除以后项的商叫做比值。
◆连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
123例:12 ∶ 20 = = 12÷20= =0.6 12∶20读作:12比20
520 前项 比值 比号 后项
3、区分比和比值:
(1)比值是一个数,通常用分数表示,也可以是整数、小数。
(2)比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
8
4、比和除法、分数的区别: 除法 分数 比 被除数 分子 前项 除号 分数线 比号 除数(不能为0) 分母(不能为0) 后项(不能为0) 商不变性质 基本性质 基本性质 是一种运算 是一个数 两个数的关系 (二)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。 (三)化简比:化简之后结果还是一个比,不是一个数。
1、根据比的基本性质,可以把比化成最简单的整数比。 2、方法:
(1)整数比:用比的前项和后项同时除以它们的最大公约数。
(2)分数比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 (3)小数比:向右移动小数点的位置,把小数比先化成整数比,再化简。 ◆也可以先求出比的比值,再将结果写成比的形式。
(四)按比例分配:把一个量按一定的比分配的方法叫做按比例分配。 例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少? 方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
53 方法二:甲:56×=21 乙:56×=35
3?53?5例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
53 方法二:甲乙的和21÷=56 乙:56×=35
3?53?5333 方法三:甲÷乙= 乙=甲÷=21÷=35
555
第五单元 圆
1、圆心:圆中心一点叫做圆心。用字母“O”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。 直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。 2.圆心确定圆的位置,半径确定圆的大小。
3.在同一个圆内,所有的半径都相等,所有的直径都相等。在同一个圆内,有无数条半径,有无数条直径。在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:1
d=2r r = d 2
4.圆的周长:围成圆的曲线的长度叫做圆的周长。
5.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母?表示。圆周率是一个无限不循环小数。在计算时,取??3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。 6.圆的周长公式:C=?d 或C=2?r
9
7、圆的面积:圆所占平面的大小叫圆的面积。
8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= ?r×r=?r2 9.圆的面积公式:S=?r2 或者S=?(d?2)2 或者S=?(C?? ?2)2
10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是
?:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=?R2-?r2 或 S=?(R2-r2)。
(其中R=r+环的宽度.)
13.环形的周长=外圆周长+内圆周长 14.半圆的周长等于圆的周长的一半加直径。
半圆周长公式:C=?d?2+d 或C=?r+2r 15.半圆面积=圆面积?2 公式为:S=?r2?2
46.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。 17.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
18.当一个圆的半径增加a厘米时,它的周长就增加2?a厘米;
当一个圆的直径增加a厘米时,它的周长就增加?a厘米。
19.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
20.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小; 当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。
nn?2?r 或 ??d36021.扇形弧长公式:L=360
? 10