优质文档
故对任意n?N*,都有an?1?an?2,即数列{an}是以2为公差的等差数列.
(2)令en?an?122?1?,则数列{en}是递减数列,所以1?en?1?. an2n?2?aa111x2?1y?x?考察函数y?x?(x?1),因为y'?1?2?,所以在(1,??)上递增,?02xxxx因此2?en??1441??2???2,2?,从而bn?en???. ena(a?2)a(a?2)en???因为对任意n?N*,总存在数列{bn}中的两个不同项bs,bt,使得bs?cn?bt,所以对任??4意的n?N都有cn???2,2?a(a?2)??,明显q?0. ??*若q?1,当n?1?logq1?2时,
a(a?2)4,不符合题意,舍去;
a(a?2)有cn?c1qn?1?2qn?1?2?若0?q?1,当n?1?logqa2?2a时,
2a?2a?2n?1有cn?c1q?2?4qn?1?2,不符合题意,舍去;
a(a?2)故q?1. 20.解:(1)当a?0时,f(x)?lnx,定义域为(0,??), xf'(x)?1?2lnx,令f'(x)?0,得x?e. 3x优质文档
优质文档
x (0,e) e (e,??) f(x) f'(x) ? 0 1 2e? 极大值 ?当x?e时,f(x)的极大值为1,无极小值. 2e(2)1?f'(x)?a?2lnx,由题意f'(x)?0对x?(0,?a)恒成立. x(x?a)3x?(0,?a),?(x?a)3?0,
?1?a?2lnx?0对x?(0,?a)恒成立, x?a?2xlnx?x对x?(0,?a)恒成立.
令g(x)?2xlnx?x,x?(0,?a),则g'(x)?2lnx?1,
1212①若0??a?e?,即0?a??e?,则g'(x)?2lnx?1?0对x?(0,?a)恒成立,
?g(x)?2xlnx?x在(0,?a)上单调递减,
则a?2(?a)ln(?a)?(?a),?0?ln(?a),?a??1与a??e?2矛盾,舍去;
?12?121②若?a?e当0?x?e当e?12,即a??e,令g'(x)?2lnx?1?0,得x?e?12,
?12时,g'(x)?2lnx?1?0,?g(x)?2xlnx?x单调递减,
?x??a时,g'(x)?2lnx?1?0,?g(x)?2xlnx?x单调递增,
优质文档
优质文档
?当x?e时,[g(x)]min?g(e)?2e121?12?12?12?ln(e)?e?12?12??2e,
?12?a??2e?.综上a??2e?2. (3)当a??1时,f(x)?lnxx?1?2xlnxf'(x)?,,
(x?1)2x(x?1)3令h(x)?x?1?2xlnx,x?(0,1),
1则h'(x)?1?2(lnx?1)??2lnx?1,令h'(x)?0,得x?e?2, ①当e?12h'(x)?0,?h(x)?x?1?2xlnx单调递减,h(x)?(0,2e?2?1], 时,?x?11x?1?2xlnxlnx??0?f(x)?恒成立,单调递减,且f(x)?f(e2). x(x?1)3(x?1)21?f'(x)?②当0?x?e?12??12时,h'(x)?0,?h(x)?x?1?2xlnx单调递增,
1212?h(e)?e12?1?2e?ln(e)?2e???12?1?0 又h(e)?e?2?2?1?2e?2?ln(e?2)?5?1?0, 2e?存在唯一x?(0,e?2),使得h(x0)?0,?f'(x0)?0,
01当0?x?x0时,f'(x0)?0,?f(x)?lnx单调递增,
(x?1)21lnx?单调递减,且f(x)?f(e2), (x?1)2当x?x?e0?12时,f'(x0)?0,?f(x)?由①和②可知,f(x)?lnx(0,x0)单调递增,在(x0,1)上单调递减, 2在(x?1)优质文档
优质文档
?当x?x0时,f(x)?lnx取极大值.
(x?1)2x0?1, 2x0h(x0)?x0?1?2x0lnx0?0,?lnx0?11lnx0???f(x0)?2x0(x0?1)2(x?1)2?1,
(x0?1)202211211?f(x0)???2121又x?(0,2e),?2(x0?)??(?,0),. 02(x?)?222022?12常州市教育学会学业水平监测 高三数学Ⅱ(附加题)参考答案
21.A.解:记?NBC外接圆为O,AB、AC分别是圆O的切线和割线,所以AB2?AN?AC,
又?A??A,所以?ABN与?ACB相似,所以BCABAC??,所以 BNANABBCABACAC?BC??3. ,????3??BNANABAN?BN?2B.解:(1)由题意42?0,即4?2a?0,解得a?2; a1??4?2?0,即(??4)(??1)?4?0,所以?2?5??0,解得?1?0,?2?5 (2)?2??1??4x?2y?0?1??1?0时,?,y??2x,属于?1?0的一个特征向量为??;
??2x?y?0??2?优质文档
相关推荐: