有理数的加减法
有理数的加法(1)
【教学目标】
1.理解有理数加法的实际意义; 2.会作简单的加法计算;
3.感受到原来用减法算的问题现在也可以用加法算. 【对话探索设计】 〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨? (2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨? (3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨? (4)把第(3)题的算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨? 〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么? 假设原点为运动起点,用下面的数轴检验你的答案.
在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队..........5:2(即红队进5个球,失2个球),红队净胜几个球? 〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢? 〖练习〗
1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米? 2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元? 〖补充作业〗
1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):
(1)温度由下降; (2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量; (4)第一天盈利-300元, 第二天盈利100元. 2.借助数轴用加法计算:
(1)前进,又前进, 那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的气温比上午8时下降, 下午5时的气温是多少? 3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?
有理数的加法(2)
【教学目标】
1.进一步理解有理数加法的实际意义;
2.经历探索有理数加法法则的过程,理解有理数加法法则; 3.感受数学模型的思想; 4.养成认真计算的习惯. 【对话探索设计】 〖探索1〗
1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本? 2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案. 〖法则理解〗
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________. 这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案\之所以取\号,是因为______________,\是由_____的绝对值和______的绝对值相______而得. 〖练习〗
1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少? 2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球? 3.第一天向北走,第二天又向北走,两天一共向北走多少km? 4.仿照(-3)+(-5) = -(3+5)= -8的格式解答: (1)-10+(-30)=
(2)(-100)+(-200) = (3)(-188)+(-309)= 〖探索2〗
1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢? 2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本? 3.正数和负数相加,结果是正数还是负数? 〖法则理解〗
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.
例如(+6)+(-2) = +(6-2) = +4.答案\之所以取\号,是因为两个加数(+6与-2)中________的绝对值较大;答案\的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.
又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5. 〖议一议〗
有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对? 〖练习〗
1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球? 2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结
果如下:
-3.5,+1.2,-2.7.
这3包洗衣粉的重量一共超过标准重量多少? 4.仿照(-8)+(+3) =-(8-3) = -5的格式解题: (1)(-3)+(+8)= (2)-5+(+4)= (3)(-100)+(+30)= (4)(-100)+(+109)= 〖法则理解〗
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____. 例如(+3)+(-3) = ______,(-108)+(+108) = ______. 〖例题学习〗
P21.例1,例2
P22.练习2(按例1格式算.) 〖作业〗
P29.习题 1, P32.习题 8,9,10
【备选素材】
用一个□表示+1,用一个■表示-1.显然□+■=0, (1)■■+□□□=(■+□)+(■+□)+ □=_____. 这表明-2+3=+(3-2)=1.
想一想:答案为什么是正的?为什么转化为减法运算? (2)计算■■■■■+□□□□□=_____.
(3)计算■■■■■+□□=(■■+□□)+ ■■■=______. 这说明-5+(+2)=-(___-___)=_______. (4)计算■■■+□□□□□=?
有理数的加法(3)
【教学目标】
1.理解有理数加法的运算律; 2.能用运算律简化有理数加法的运算. 【对话探索设计】 〖复习导入〗
1.小学时已学过的加法运算律有哪几条?
2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3.(1)计算30+(-20)=__________=______,-20+30=___________=_____; (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______. 你猜对了吗? 〖试一试〗
你会用文字表述加法的两条运算律吗? 你会用字母表示加法的这两条运算律吗? 〖例题学习〗
P22.例3 〖例题探索〗
P23.例4.
你认为例4的两种解法哪一种比较好? 〖练习〗 P23.练习1 〖作业〗
P23.练习2,P30.习题2
【备用素材】
1.(1) 两个数都是负数,它们的和一定是负数吗?为什么? (2) 两个数的和是负数,这两个数一定都是负数吗?为什么?
2.(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进_____球,失______球,净胜_______球;而黄队则进_____球,失______球,净胜_______球.
(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),两场比赛该队净胜几个球?
3.某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少,请画出(温度计)示意图.
4.各举两个反例说明以下的说法是错误的: (1)两个有理数相加,和一定大于每一个加数. (2)两个数的和是0,这两个数都是0.
*(3)若a>0,b<0,且|a|<|b|,则a+b=-(|a|-|b|).
5.(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗? (2)a+b会小于a吗?为什么?
6.若用Δ表示+10,用?表示-10,用◇表示+1,用◆表示-1. 则ΔΔ◇◇◇表示_________;?????◆◆◆◆表示_______.
ΔΔ◇◇◇+?????◆◆◆◆=(ΔΔ+??)+( ◇◇◇+◆◆◆)+_____________=_________________.结果表示的数是_______.
相关推荐: