第一范文网 - 专业文章范例文档资料分享平台

行列式的计算技巧总结

来源:用户分享 时间:2025/5/17 3:08:33 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

1?1??1?110?0010??100?0100. ?0?1?1?1D=

?1???00???1从第二列开始,每列乘以??1?加到第一列,得:

?(n?1)0D?0?00???1?n?11?10?0010??100?0100 ?0?1?1???00???1?n?1?.

2.5数学归纳法

有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.

cos?10?0012cos?1?0001??000?1000?12cos?例9 计算行列式Dn?2cos????00?.

?2cos?解:用数学归纳法证明. 当n?1时,D1?cos?.

11

当n?2 时,D2?cos?112cos??2cos2??1?cos2?.

猜想,Dn?cosn?.

由上可知,当n?1,n?2时,结论成立.

假设当n?k时,结论成立.即:Dk?cosk?.现证当n?k?1时,结论也成立.

cos?10?0012cos?1?0001??000?1000?12cos?当n?k?1时,Dk?1?2cos????00?.

?2cos?将Dk?1按最后一行展开,得

cos?Dk?1???1?k?1?k?112cos?1?012cos?1?00?000

?2cos?10?0cos?10?01?2cos???00???2cos??0???1?k?1?k1?02cos??0 ?0???1?2cos?Dk?Dk?1.

因为

Dk?cosk?,

12

Dk?1?cos?k?1???cos?k?????cosk?cos??sink?sin?,

所以

Dk?1?2cos?Dk?Dk?1

?2cos?cosk??cosk?cos??sink?sin? ?cosk?cos??sink?sin? ?cos?k?1??.

这就证明了当n?k?1时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:Dn?cosn?.

2.6 递推法

技巧分析:若n阶行列式D满足关系式

aDn?bDn?1?cDn?2?0.

则作特征方程

ax2?bx?c?0.

n?1① 若??0,则特征方程有两个不等根,则Dn?Ax1n?1?Bx2.

② 若??0,则特征方程有重根x1?x2,则Dn??A?nB?x1n?1. 在①②中, A,B均为待定系数,可令n?1,n?2求出.

13

9500?0004950?0000495?000例10 计算行列式Dn????????0000?490000?04解:按第一列展开,得

Dn?9Dn?1?20Dn?2.

Dn?9Dn?1?20Dn?2?0.作特征方程

x2?9x?20?0.

解得

x1?4,x2?5.

Dn?1n?A?4?B?5n?1.

当n?1时,9?A?B; 当n?2时,61?4A?5B. 解得

A??16,B?25,

所以

D?1n?5n?4n?1.

14

?.

59

搜索更多关于: 行列式的计算技巧总结 的文档
行列式的计算技巧总结.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7phcq6bkhi5kaxc90sb6_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top