f?(x)?mxm?1(1?x)n?xmn(1?x)n?1(?1)?xm?1(1?x)n?1m(1?n?mmx)当x?(0,mn?m)时,f?(x)?0 ?f(x)在(0,mn?m)内单调递减
当x?(mn?m,1)时,f?(x)?0
?f(x)在(mn?m,1)内单调递减。
x?(
m
n?m
,1)f?(x)?0f??max0?x?1
f(x)?
?max??m? ?f(0),f(n?m)?
?
mmgnn?
(m?n)m?n
f11??0f(x)dx??10xm(1?x)ndx???2(sin2t)m(1?sin2t)ndsin20t
???20sin2mtcos2ntcostg2gsintdt?n!m!(n?m?1)!1f12m2n22?[?0x(1?x)dx]?1?[?24m4n220sintcostd(sint)]?1
?[?22sin4m?1tcos4n?120tdt]?(2n)!(2m)![2(n?m)?1]!(4)若f(x)?(x?1)10e?x
当x??0,1?时,f(x)?0
编辑版word
f?(x)?10(x?1)9e?x?(x?1)10(?e?x)?(x?1)9e?x(9?x)?0?f(x)在[0,1]内单调递减。
f??maxf(x)?0?x?1?max?f(0),f(1)?210?ef??f(x)dx10101??(x?1)10e?xdx??(x?1)10e?x?5?f10e120?2x010??10(x?1)9e?xdx012?[?(x?1)edx]1234?7(?2)4e5。证明f?g?f?g 证明:
f?(f?g)?g?f?g?g?f?g?f?g6。对f(x),g(x)?C[a,b],定义
1
(1)(f,g)??f?(x)g?(x)dxab(2)(f,g)??f?(x)g?(x)dx?f(a)g(a)ab
问它们是否构成内积。 解:
(1)令f(x)?C(C为常数,且C?0)
则f?(x)?0
编辑版word
而(f,f)??baf?(x)f?(x)dx
这与当且仅当f?0时,(f,f)?0矛盾
?不能构成C1[a,b]上的内积。
(2)若(f,g)??f?(x)g?(x)dx?f(a)g(a),则
ab(g,f)??g?(x)f?(x)dx?g(a)f(a)?(f,g),???Kab(?f,g)??[?f(x)]?g?(x)dx?af(a)g(a)ab
??[?f?(x)g?(x)dx?f(a)g(a)]ab??(f,g)?h?C1[a,b],则
(f?g,h)??[f(x)?g(x)]?h?(x)dx?[f(a)g(a)]h(a)ab??f?(x)h?(x)dx?f(a)h(a)??f?(x)h?(x)dx?g(a)h(a)
aabb?(f,h)?(h,g)(f,f)??[f?(x)]2dx?f2(a)?0
ab若(f,f)?0,则
?ba[f?(x)]2dx?0,且f2(a)?0
?f?(x)?0,f(a)?0 ?f(x)?0
即当且仅当f?0时,(f,f)?0. 故可以构成C[a,b]上的内积。
7。令Tn(x)?Tn(2x?1),x?[0,1],试证Tn(x)是在[0,1]上带权?(x)?****多项式,并求T0(x),T1(x),T2(x),T3(x)。
*1?*?1x?x2的正交
解:
若Tn(x)?Tn(2x?1),x?[0,1],则
*编辑版word
?10*Tn*(x)Tm(x)P(x)dx1??Tn(2x?1)Tm(2x?1)01x?x2dx
令t?(2x?1),则t?[?1,1],且x?t?1,故 2?10*Tn*(x)Tm(x)?(x)dx1??Tn(t)Tm(t)?11t?1t?12?()2211??Tn(t)Tm(t)dt2?11?td(t?1) 2又Q切比雪夫多项式Tk*(x)在区间[0,1]上带权?(x)???11?x2正交,且
?0,n?m??1x?T(x)T(x)d??,n?m?0 ??1nm21?t?2???,n?m?0??Tn*(x)?是在[0,1]上带权?(x)?又QT0(x)?1,x?[?1,1]
1x?x2的正交多项式。
?T0*(x)?T0(2x?1)?1,x?[0,1]QT1(x)?x,x?[?1,1]?T1*(x)?T1(2x?1)?2x?1,x?[0,1]
QT2(x)?2x2?1,x?[?1,1]?T2*(x)?T2(2x?1)?2(2x?1)?1?8x2?8x?1,x?[0,1]2
QT3(x)?4x3?3x,x?[?1,1]?T(x)?T3(2x?1)?4(2x?1)3?3(2x?1)*3
?32x?48x?18x?1,x?[0,1]232
8。对权函数?(x)?1?x,区间[?1,1],试求首项系数为1的正交多项式?n(x),n?0,1,2,3.
编辑版word
相关推荐: