学习必备 欢迎下载
如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.?反之,?如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.
这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:?只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信?
【作图验证】(用直尺和圆规)
先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)
【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)
画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC: 1.画线段取B′C′=BC;
2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′.
【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等.
【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. 二、范例点击,应用所学
【例1】如课本图所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)
【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.
证明:∵D是BC的中点, ∴BD=CD
在△ABD和△ACD中
学习必备 欢迎下载
?AB?AC,??BD?CD, ?AD?AD.? ∴△ABD≌△ACD(SSS).
【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,?证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写. 三、实践应用,合作学习 【问题思考】
已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?
【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.
【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”
【教学形式】先独立思考,再合作交流,师生互动. 四、随堂练习,巩固深化 课本练习. 【探研时空】
如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗??你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)
五、课堂总结,发展潜能 1.全等三角形性质是什么?
2.正确地判断出全等三角形的对应边、对应角,?利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?
3.“边边边”判定法告诉我们什么呢??(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)
学习必备 欢迎下载
六、布置作业,专题突破 1.课本习题
2.选用课时作业设计. 板书设计
把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习. 疑难解析
证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.
三角形全等判定(SAS)
学习必备 欢迎下载
教学内容
本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明. 教学目标
1.知识与技能 领会“边角边”判定两个三角形的方法.
2.过程与方法 经历探究三角形全等的判定方法的过程,学会解决简单的推理问题. 3.情感、态度与价值观 培养合情推理能力,感悟三角形全等的应用价值. 重、难点及关键
1.重点:会用“边角边”证明两个三角形全等. 2.难点:应用结合法的格式表达问题.
3.关键:在实践、观察中正确选择判定三角形全等的方法. 教具准备 投影仪、直尺、圆规.
教学方法 采用“操作──实验”的教学方法,让学生有一个直观的感受. 教学过程
一、回顾交流,操作分析 【动手画图】
【投影】作一个角等于已知角. 【学生活动】动手用直尺、圆规画图. 已知:∠AOB.
求作:∠A1O1B1,使∠A1O1B1=∠AOB.
【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA?于点C,?交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD?长为半径画弧,交前面的弧于点D1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.
【导入课题】
教师叙述:请同学们连接CD、C1D1,回忆作图过程,分析△COD和△C1O1D1?中相等的条件.
【学生活动】与同伴交流,发现下面的相等量:
OD=O1D1,OC=O1C1,∠COD=∠C1O1D1,△COD≌△C1O1D1. 归纳出规律:
两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS?”). 【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中
相关推荐: