其中:E为物体在一定温度下的辐射能力;E0 为与E在同一温度下的黑体辐射能力; ε为黑度系数,表示物体的发射能力接近黑体的情况,其值在0~1之间。
由上可知,任何物体只要温度不是绝对零度都不断地发射红外辐
射,物体的温度越高,辐射的功率就越大,只要知道物体的温度和它的比辐射率,就可算出它所发射的辐射功率。所以如果能量出物体的辐射功率,则可确定它的温度。 2.3.3热释红外传感器的结构
红外探测器是红外热释传感器的重要组成部分。它可以分成热释电探测器和光子探测器两大类:其中,热释电探测器是电效应工作的探测器,其响应速度虽不如光子型,但由于它可在室温下使用、光谱响应宽、工作频率宽,灵敏度与波长无关,因此其应用领域广,容易使用。常用的热释电探测器如:LiTaO2(钽酸锂) 探测器、BaTi O2(钛酸钡) 探测器和TGS(硫酸三甘酞)探测器等。
如图2-1为热释电红外传感器的结构图、电路图。传感器的敏感元为PZT,在上下两面做上电极,并在表面加一层黑色氧化膜以提高其转化效率。它的等效电路是一个在负载电阻上并联一个电容的电流发生器,其输出阻抗极高,而输出电压信号又极其微弱,故在管内附有JFET及厚膜电阻,以达到阻抗变大的目的。在管壳的顶部设有虑光镜(TO-5封装)。图2-2为热释电传感器的实物照片。
图2-1
图2-2
热释电体的自发极化强度与温度有关。随着温度升高,自发极化强度下降。温度升高到Tc时,自极化消失,此温度称为居里温度。温度超过居里温度,铁电体发生变化,从极化晶体变为非极化晶体,极化强度变为
零。
由于自发极化,在与极化轴相垂直的晶体两外表面上出现正负极化强度。但是这些面束缚电荷常常被晶体内部或外部的电荷所中和,因而显示不出来。因此不能在静态条件下测量自发极化,但是自由电荷和面束缚电荷所需的时间很长,因晶体自发极化的弛豫时间很短,约10-12s,因此当晶体经受一定频率的温度变化时其体内的自由电荷和外部杂散电荷便来不及中和变化着的面束缚电荷,因此可在动态条件下测量自发极化。
如果在热释电晶体沿极化轴的端面装上电极,那么自发极化在电极上感应的电荷量为:
Q=APS
当红外辐射照射时,热释电晶体温度升高,自发极化电晶体温度升高,自发极化强度降低,因此电极表面上感应电荷减少,这相当于“释放”了一部分电荷,因此称之为热释电现象。
如图2-3所示的电路连接负载,则在红外辐射时,就有电流流过负载经放大后成为输出信号。
图2-3
若没有经过调制的红外辐射热释电晶体,使温度升高到一个新的平衡值,那么电极表面的感应电荷也变化到新的平衡值,不再“释放”电荷,
也就不再输出信号。因此,热释电探测器与其他热释探测器不同,它只存在温度升降的过程中才有信号输出。所以利用热释电探测器探测的红外辐射必须经过调制。
如果用调制频率为f的红外线照射热释电晶体,则晶体的温度自发极化强度(PS)及其引起的面束缚作电荷密度均以频率f作周期变化。如果1f小于自由电荷中和面束缚电荷所需要的时间,那么在垂直于PS的晶体的两个端面之间就会产生开路电压。如果用负载电阻Rg把两个电极连接起来,就会有热释电电流Is 通过负载。热释电晶体自发极化强度随温度变化,使电极表面感应电荷发生变化,其等效电路如图2-4所示。
图2-4
电流源的电流强度为Is为:
式中:p一自发极化强度对温度变化率,称为热释电系数, 2.3.4 菲涅尔透镜
目前人体验知系统中的光调制器一般都采用多元阵列式菲涅尔透镜,它起到红外辐射收集器和调制器的双重作用。热释电传感器只有与菲涅尔透镜配合使用才能发挥最大作用。加装菲涅尔透镜可使传感器的探测半径从不足2m提高到至少8m范围。菲涅尔透镜实际是一个透镜组,每个单
相关推荐: