1?2?(2)cosB?cos2A?2cos2A?1?2????1??,
9?3?在△ABCcosC??cos?A?B??sinAsinB?cosAcosB?222222 27305 9在△ACM中,由余弦定理得:AM?AC?CM?2AC?CM?cosC?所以,AM?305. 318.解:(1)证法1:在棱CC1,DD1分别取点M,N,使得QN?PM?1,易知四边形MNQP是平行四边形,所以MNPPQ,联结FM,MN,NE,则AE?ND,且AEPND 所以四边形ADNE为矩形,故ADPNE,同理,FMPBCPAD
且NE?MF?AD,故四边形FMNE是平行四边形,所以EFPMN,所以EFPPQ 故E,F,P,Q四点共面
又EFPPQ,EF?平面BPQ,PQ?平面BPQ, 所以EFP平面PQB.
证法2:因为直棱柱ABCD?A1B1C1D1的底面是菱形,∴AC?BD,AA1?底面ABCD,设AC,BD交点为O,以O为原点,分别以OA,OB,及过O且与AA1平行的直线为x,y,z轴建立空间直角坐标系.则有A?2,0,0?,B?0,1,0?,C??2,0,0?,D?0,?1,0?,设BF?a,
a??1,3?,则E?2,0,a?1?,F?0,1,a?,P??2,0,a?1?,Q?0,?1,a?,
uuuruuurEF???2,1,1?,QP???2,1,1?,所以EFPPQ,故E,F,P,Q四点共面.又EFPPQ,
- 9 -
EF?平面BPQ,PQ?平面BPQ,所以EFP平面PQB.
uuuruuur(2)平面EFPQ中向量EF???2,1,1?,EQ???2,?1,1?,设平面EFPQ的一个法向量为ur??2x1?y1?z1?0,可得其一个法向量为n1??1,2,2?. ?x1,y1,z1?,则??2x?y?z?0?111uuuruuur平面BPQ中,BP???2,?1,a?1?,BQ??0,?2,a?,设平面BPQ的一个法向量为 r??2x2?y2??a?1?z2?0?, n??x2,y2,z2?,则????2y2?az2?0uur所以取共一个法向量n2??a?2,2a,4?.
uruur若cosn1,n2?uruurn1?n25?522,则?a?10??5a?4a?8, 5?a?2?2?a2?16?即有a?4a?23?0,a??1,3?,
2解得a?2?32??1,3?,故不存在点P使之成立.
19.解:方法一:(1)如图设?BOE??,则B?2cos?,2sin?
?D?2cos?,2sin??,所以xP?2cos?,yP?2sin?.
x2y2??1. 所以动点P的轨迹C的方程为42方法二:(1)当射线OD的斜率存在时,设斜率为k,OD方程为y?kx,
- 10 -
由??y?kx22?x?y?2得yP?224222x?2y,同理得,所以x?PP?4即有动点P的轨迹CP221?k1?kx2y2的方程为??1.当射线OD的斜率不存在时,点0,?2也满足.
42??(2)由(1)可知E为C的焦点,设直线l的方程为x?my?2(斜率不为0时)且设点
M?x?,N?x??x?my?21,y12,y2?,由?得??x2?2y2?4?m2?2?y2?22my?2?0 ???y1?y2??22m所以2?m?2,所以1?MN?11?m2y?m2?214?m2?1? ?yy??2?y?122m2?2又射线OQ方程为y??mx,带入椭圆C的方程得x2?2?my?2?4,即x24Q?1?2m2y2Q?4m211?2m21?2m2,OQ2?4?m2?1? 11m2所以?21?2m2MN?OQ2?4?m2?1??4?m2?1??34 又当直线l的斜率为0时,也符合条件.综上,
113MN?OQ2为定值,且为4. 20.解:(1
)
所
求
概
P???121??211??222??111??222???C33??22????C211?42???C2??23?3????C22?2?????C23?3????C22?2???9
(2)他们在一轮游戏中获“优秀小组”的概率为
P?C12222122222P1?1?P1?C2P2?C2P1C2P2?1?P2??C2P1C2P2 ?2PP12?P1?P2??3P221P2
因为P41?P2?3,所以P?83PP2222?3P12 因0?P1?1,0?P2?1,所以13?P1?1,13?P2?1,又P?P21?P2?42P2???2???9 所以
19?p?41481p29,令t?p1p2,以9?t?9,则P?h?t??3t2?3t
- 11 -
率
416时Pmax?,他们小组在n轮游戏中获“优秀小组”次数?满足?~B?n,p? 92744由npmax?16,则n?27,所以理论上至少要进行27轮游戏.此时P, ?P?pp?1212392 P?P?123当t?21.解:(1)∵f?x??alnx?x?a?x?0,a?R? ∴f??x??aa?x,∵x?0,a?R. ?1?xx∴①当a?0时,f?x?的减区间为?0,???,没有增区间 ②当a?0时,f?x?的增区间为?0,a?,减区间为?a,???
(2)原不等式?k?a?1?lnx??x?xlnx?b.
xa?1?lnx??x?xlnx?b1?lnx?x?xlnx?b?,
xx∵a??1,e?,x??1,e?,∴令g?x??1?lnx?x?xlnx?b?lnx?x?b?g??x??,
xx21令p?x???lnx?x?b?p??x????1
x?p?x???lnx?x?b在?1,???上递增;
①当p?1??0时,即b?1,∵b??1,e?,所以b?1时x??1,e?,p?x??0?g??x??0, ∴g?x?在?1,e?上递增;∴c?g?x?min?g?1??b?b?c?2b?2.
②当p?e??0,即b??e?1,e?时x??1,e?,p?x??0?g??x??0,∴g?x?在?1,e?上递减;
∴c?g?x?min?g?e??b?2b?22??1?b?c??b??e?,e??1?. eee??e③当p?1?p?e??0时,p?x???lnx?x?b在上递增;
存在唯一实数x0??1,e?,使得p?x0??0,则当x??1,x0?时?p?x??0?g??x??0. 当x??x0,e?时?p?x??0?g??x??0
- 12 -
相关推荐: