第一范文网 - 专业文章范例文档资料分享平台

一次函数综合 - 新思维

来源:用户分享 时间:2025/6/9 23:11:51 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

坐标是2. 在直线y=x+1中,令x=3,则纵坐标是:3+1=4=2; 则A4的横坐标是:1+2+4=7,则A4的纵坐标是:7+1=8=2; 据此可以得到An的纵坐标是:2n﹣132,n横坐标是:2﹣1﹣1. 故点An的坐标为 (2﹣1,2n﹣1n﹣1). n故答案是:(2﹣1﹣1,2n﹣1). 点评: 本题主要考查了待定系数法求函数解析式,正确得到点的坐标的规律是解题的关键.

7.(2011?安顺)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 (2,4)或(3,4)或(8,4) .

考点: 矩形的性质;坐标与图形性质;等腰三角形的性质.菁优网版权所有 专题: 压轴题;数形结合. 分析: 分PD=OD(P在右边),PD=OD(P在左边),OP=OD三种情况,根据题意画出图形,作PQ垂直于x轴,找出直角三角形,根据勾股定理求出OQ,然后根据图形写出P的坐标即可. 解答: 解:当OD=PD(P在右边)时,根据题意画出图形,如

图所示: 过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5, 根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P(18,4); 当PD=OD(P在左边)时,根据题意画出图形,如图所示: 过P作PQ⊥x轴交x轴于Q,在直角三

角形DPQ中,PQ=4,PD=OD=5, 根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2(2,4); 当PO=OD时,根据题意画出图形,如图所示: 过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4, 根据勾股定理得:OQ=3,则P3(3,4), 综上,满足题意的P坐标为(2,4)或(3,4)或(8,4). 故答案为:

搜索更多关于: 一次函数综合 - 新思维 的文档
一次函数综合 - 新思维.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7xkol6izc462a898ee62_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top