第一范文网 - 专业文章范例文档资料分享平台

电子秤毕业设计论文 - 图文

来源:用户分享 时间:2025/9/5 18:14:29 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

硅湖职业技术学院毕业论文(设计)

图2.7 利用普通运放构成的放大器

电阻R1、R2和电容C1、C2、C3、C4用于滤除前级的噪声,C1、C2为普通小电容,可以滤除高频干扰,C3、C4为大的电解电容,主要用于滤除低频噪声。

优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器R6可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。

缺点:此电路要求R3、R4相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声,对精度影响较大。

方案三 采用专用仪表放大器,如:AD620,INA126等。

此类芯片内部采用差动输入,共模抑制比高,差模输入阻抗大,增益高,精度也非常好,且外部接口简单。

以AD620为例,内部结构如下图所示:

图2.8 AD620的内部等效图

13

硅湖职业技术学院毕业论文(设计)

接口如下图所示:

图2.9 AD620的接口图

电路的工作原理:A1、A2工作在负反馈状态,其反向输入端的电压与同相输入端的电压相等。即Rg两端的电压分别为Vin+、Vin-。因此

i?Vin??Vin?GRg(2.5)

设图(2.8)中电阻R1=R2=R,则A1、A2两输出端的电压差U12为 U12?iG(R1?R2?Rg)

2R?(Vin??Vin?)(1?) Rg (2.6)

将式(2.6)代入式(2.5)得

2R

VO??U12??(1?)(Vin??Vin?)Rg

放大器的增益Av为

AV?UO(Vin??Vin?) 2R??(1?) Rg (2.7) 可见,仅需调整一个电阻Rg,就能方便的调整放大器的增益。由于整个电路对称,调整时不会造成共模抑制比的降低。

在接口图(2.9)中,通过改变可变电阻R3的阻值大小来改变放大器的增益,放大器增益计算公式如下:

49.4K?G??1 (2.8)

R3AD620 具有体积小、功耗低、精度高、噪声低和输入偏置电流低的特点。其最大输入偏置电流为20nA,这一参数反映了它的高输入阻抗。AD620在外接电阻Rg时,可实现1~1000范围内的任意增益;工作电源范围为±2.3~±18V;

14

硅湖职业技术学院毕业论文(设计)

最大电源电流为1.3mA;最大输入失调电压为125?V;频带宽度为120kHz(在G=100时)。

基于以上分析,我们决定采用制作方便而且精度很好的专用仪表放大器AD620。

2.5.3 A/D 转换器

A/D转换器选用的原则:

1、A/D 转换器的位数。A/D 转换器决定分辨率的高低。在系统中,A/D 转换器的分辨率应比系统允许引用误差高一倍以上。

2、A/D 转换器的转换速率。不同类型的A/D 转换器的转换速率大不相同。积分型的转换速率低,转换时间从几豪秒到几十毫秒,只能构成低速A/D 转换器,一般用于压力、温度及流量等缓慢变化的参数测试。逐次逼近型属于中速A/D 转换器,转换时间为纳秒级,用于个通道过程控制和声频数字转换系统。

3、是否加采样/保持器。

4、A/D 转换器的有关量程引脚。有的A/D 转换器提供两个输入引脚,不同量程范围内的模拟量可从不同引脚输入。

5、A/D 转换器的启动转换和转换结束。一般A/D 转换器可由外部控制信号启动转换,这一启动信号可由CPU提供。转换结束后A/D 转换器内部转换结束信号触发器置位,并输出转换结束标志电平。通知微处理器读取转换结果。

6、A/D 转换器的晶闸管现象。其现象是在正常使用时,A/D 转换器芯片电流骤增,时间一长就会烧坏芯片。为防止这种现象,可采取如下措施:

(1)加强抗干扰措施,尽量避免较大的干扰电流进入电路;

(2)加强电源稳压滤波措施, 在A/D 转换器电源入口处加退耦滤波电路,为防止窄脉冲波窜入在电解电容上再接一高频滤波电容;

(3)在A/D 转换器的电源端接一限流电阻,可在出现晶闸管现象时,有效地把电流限定在允许范围内,以防止烧坏器件。

选择A/D 转换器除考虑上述要点外,为防止对A/D 转换器的技术指标的影响,还要注意以下几个问题:

(1)工作电源电压是否稳定; (2)外接时钟信号的频率是否合适; (3)工作环境温度是否符合器件要求; (4)与其它器件是否匹配; (5)外接是否有强的电磁干扰; (6)印刷线路板布线是否合理。

由上面对传感器量程和精度的分析可知:A/D转换器误差应在3g以下。

15

硅湖职业技术学院毕业论文(设计)

12位A/D精度:10Kg/4096=2.44g; 14位A/D精度:10Kg/16384=0.61g;

考虑到其他部分所带来的干扰,12位A/D转换器无法满足系统精度要求。所以我们需要选择14位或者精度更高的A/D转换器。

方案一 逐次逼近型A/D转换器,如:ADS7805、ADS7804等。 ‘逐次逼近型A/D转换,一般具有采样/保持功能。采样频率高,功耗比较低,是理想的高速、高精度、省电型A/D转换器件。

高精度逐次逼近型A/D转换器一般都带有内部基准源和内部时钟,基于51系列单片机构成的系统设计时仅需要外接几个电阻、电容。

但考虑到所转换的信号为一慢变信号,逐次逼近型A/D转换器的快速的优点不能很好的发挥,且根据系统的要求,14位AD足以满足精度要求,太高的精度就反而浪费了系统资源。所以此方案并不是理想的选择。

方案二 双积分型A/D转换器:如:ICL7135、ICL7109等。

双积分型ADC是间接型A/D转换器,其基本原理是首先对未知的输入电压进行固定时间的积分,然后转向对标准电压进行反相积分至积分输出电压为零(返回起始值), 则标准电压积分的时间正比与输入电压。输入电压越大,反向积分时间越长。用高频率时钟脉冲来测量标准电压积分时间,即可得到输入电压对应的数字代码。

双积分型A/D转换器虽然速度较慢,但转换精度高(如:ICL7135),具有精确的差分输入。其输入阻抗高,可自动调零,具有超量程信号,全部输出与TTL电平兼容。

双积分型A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力特强,对高于工频干扰(例如噪声电压)也具有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。

综合的分析其优点和缺点,我们最终选择了精度为10Kg/ ?20000= ?0.5g的ICL7135。

2.6人机交互部分

2.6.1 键盘输入

键盘输入是人机交互界面中重要的组成部分,它是系统接受用户指令的直接

16

搜索更多关于: 电子秤毕业设计论文 - 图文 的文档
电子秤毕业设计论文 - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c7xuit0wdam4mg6283wa9_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top