a7=2an+1=1-a,a6=-1;
n
11
a6=-1an+1=
1
,a5=2. 1-an
1
ɴ˿֪{an}һ,Ϊ3,a1=a7=2.
28.(2014T12)Ȳ{an}a7+a8+a9>0,a7+a10<0,n= ʱ,{an}ǰn. 𰸡8
ɵȲеʿɵa7+a8+a9=3a8>0,a8>0;a7+a10=a8+a9<0,a9<0.{an}ǰ8. 29.(2014T11){an}Ϊa1,Ϊ-1ĵȲ,SnΪǰn.S1,S2,S4ɵȱ,a1ֵΪ . 𰸡- ֪S1=a1,S2=a1+a2=2a1-1,S4=4a1+2(-1)=4a1-6,S1,S2,S4ɵȱ,(2a1-1)=a1(4a1-6),2a1+1=0,a1=-. 30.(2013ȫ2T16)Ȳ{an}ǰnΪSn,֪S10=0,S15=25,nSnСֵΪ . 𰸡-49
{an}Ϊa1,Ϊd,S10=10a1+S15=15a1+2d=15a1+105d=25. ٢,a1=-3,d=,Sn=-3n+
1
3
1243
2
12109
d=10a1+45d=0, 21514
23n(n-1)2
232
=n-n. 1
32
103f(n)=nSn,f(n)=3n-3n,f'(n)=n-3n. f'(n)=0,n=0n=3.
n>ʱ,f'(n)>0,0 31.(2013T14)֪ȱ{an}ǵ,Sn{an}ǰn.a1,a3Ƿx-5x+4=0,S6= . 𰸡63 Ϊx-5x+4=0Ϊ14, {an}ǵ, a1=1,a3=4,q=2. 13 2 2 10 2 20 20 203203203 1(1-26)S6==63. 1-2 231332.(2013ȫ1T14){an}ǰnSn=an+,{an}ͨʽan= . 𰸡(-2) Sn=3an+3, ൱n2ʱ,Sn-1=3an-1+3. -,an=3an-3an-1,a23132 2 an n-1 n-1 21 21 =-2. n-1 a1=S1=a1+,a1=1.{an}1Ϊ,-2Ϊȵĵȱ,an=(-2). 33.(2012ȫT14)ȱ{an}ǰnΪSn,S3+3S2=0,q= . 𰸡-2 S3=-3S2,ɵa1+a2+a3=-3(a1+a2), a1(1+q+q)=-3a1(1+q), q+4q+4=0,q=-2. 1.(2019ȫ2T18)֪{an}ǸΪĵȱ,a1=2,a3=2a2+16. (1){an}ͨʽ; (2)bn=log2an.{bn}ǰn. (1){an}ĹΪq,2q=4q+16,q-2q-8=0,q=-2(ȥ)q=4. {an}ͨʽΪan=24=2 n-1 2n-12 2 22 . 2 (2)(1)bn=(2n-1)log22=2n-1,{bn}ǰnΪ1+3++2n-1=n. 2.(2019ȫ2T19)֪{an}{bn}a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4. (1)֤:{an+bn}ǵȱ,{an-bn}ǵȲ; (2){an}{bn}ͨʽ. (1)֤4(an+1+bn+1)=2(an+bn),an+1+bn+1=(an+bn). Ϊa1+b1=1,{an+bn}Ϊ1,Ϊ2ĵȱ. 4(an+1-bn+1)=4(an-bn)+8,an+1-bn+1=an-bn+2. Ϊa1-b1=1,{an-bn}Ϊ1,Ϊ2ĵȲ. (2)(1)֪,an+bn= 12??-11 12 ,an-bn=2n-1. 14 an=2[(an+bn)+(an-bn)]=??+n-2, bn=[(an+bn)-(an-bn)]=??-n+. 3.(2019T18){an}ǵȲ,{bn}ǵȱ,ȴ0.֪a1=b1=3,b2=a3,b3=4a2+3. (1){an}{bn}ͨʽ; (2){cn}cn={ 1,??Ϊ, 21 12121 1212a1c1+a2c2++a2nc2n(nN). ????,??Ϊż, * (1)Ȳ{an}ĹΪd,ȱ{bn}ĹΪq., 3??=3+2??,??=3,{2{ ??=3,3??=15+4??.an=3+3(n-1)=3n,bn=33=3. ,{an}ͨʽΪan=3n,{bn}ͨʽΪbn=3. (2)a1c1+a2c2++a2nc2n=(a1+a3+a5++a2n-1)+(a2b1+a4b2+a6b3++a2nbn) ????1 =[n3+(-)6]+(631+1232+1833++6n3n) 2n n-1 n =3n+6(13+23++n3). Tn=13+23++n3, 2 3 n+1 1 2 n 212n 3Tn=13+23++n3, -ٵ,2Tn=-3-3-3--3+n3 2 2 3 n n+1 ??+1 3(1-3??)+3n+1(2??-1)3=-1-3+n3=. 2,a1c1+a2c2++a2nc2n=3n+6Tn=3n 2 (2??-1)3??+1+3+32 = (2??-1)3??+2+6??2+9* (nN). 2 4.(2019T19){an}ǵȲ,{bn}ǵȱ.֪a1=4,b1=6,b2=2a2-2,b3=2a3+4. (1){an}{bn}ͨʽ; 1,2???<2??+1,* (2){cn}c1=1,cn={kN. ?? ????,??=2,{??2??(??2??-1)}ͨʽ; aici(nN). ??=12?? * 6??=6+2??,??=3, (1)Ȳ{an}ĹΪd,ȱ{bn}ĹΪq.{2{ ??=2,6??=12+4??,an=4+(n-1)3=3n+1,bn=62=32. ,{an}ͨʽΪan=3n+1,{bn}ͨʽΪbn=32. (2)??2??(??2??-1)=??2??(bn-1) =(32+1)(32-1)=94-1. 15 n n n n n-1 n ,{??2??(??2??-1)}ͨʽΪ??2??(??2??-1)=94-1. ڡaici=[ai+ai(ci-1)] ??=1 ??=1 2?? 2?? n =ai+??2??(??2??-1) ??=1 ??=1 2?? ?? =[2 n ?? 2??(2??-1)i 4+3]+(94-1) 2??=1 2n-1 =(32=272 +52 n-1 4(1-4??) )+91-4-n * 2n-1 +52-n-12(nN). n-1 5.(2019㽭T 20)Ȳ{an}ǰnΪSn,a3=4,a4=S3.{bn}:ÿnN,Sn+bn,Sn+1+bn,Sn+2+bnɵȱ. (1){an},{bn}ͨʽ; (2)cn= ????** ,nN,֤:c1+c2++cn<2n,nN. 2???? * (1){an}ĹΪd,a1+2d=4,a1+3d=3a1+3d, a1=0,d=2. Ӷan=2n-2,nN. Sn=n-n,nN. Sn+bn,Sn+1+bn,Sn+2+bnɵȱе(Sn+1+bn)=(Sn+bn)(Sn+2+bn). 2 bn=(????+1-SnSn+2). 2 2 ** 1 ??bn=n+n,nN. ?? (2)cn=2??=2??(??+1)=??(??+1),nN. * 2* ??2??-2??-1 ?? ѧɷ֤. ٵn=1ʱ,c1=0<2,ʽ; ڼn=k(kN)ʱʽ,c1+c2++ck<2??. ô,n=k+1ʱ,c1+c2++ck+ck+1<2??+̡??)=2??+1, n=k+1ʱʽҲ. ݢٺ͢,ʽc1+c2++cn<2??nN. 6.(2019աT 20)Ϊ1ҹΪĵȱΪM- С. (1)֪ȱ{an}(nN):a2a4=a5,a3-4a2+4a1=0,֤:{an}ΪM- С; 16 * * * ?? <2??(??+1)(??+2) + 1 <2????+1 +2??+1+??=2??+2(??+1?