19.(本小题满分12分)
如图3,已知斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为3的菱形,ABB1A1⊥AA1C1C,且A1B=AB=AC=1.
)求证:AA1⊥BC1; )求A1到平面ABC的距离; )求二面角B-AC-C1的余弦值.
第 5 页 共 12 页
2图3
∠ACC1为锐角,侧面(Ⅰ(Ⅱ(Ⅲ
20.(本小题满分12分) ????3*n?N设向量a?(x,2),b?(x?n,2x?)(),函数f(x)?a?b在[0,1]上的最小值与最大值的2和为an;数列{bn}的前n项和Sn满足:Sn?4bn?n(n?N*).
(Ⅰ)求an和bn的表达式;
(Ⅱ)令cn??an?(bn?1),试问:在数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn?ck成立?证明你的结论.
第 6 页 共 12 页
21.(本小题满分12分)
x2y2如图4,已知椭圆C:2?2?1(a?b?0)的左、右焦点分别是F1、F2,M是椭圆C的上顶
ab????????????????????点,椭圆C的右准线与x轴交于点N,且3MF2?MF1?2MN,|MN|?5.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若⊙O是以F1F2为直径的圆,直线l:y?kx?m与⊙O相切,并与椭圆C交于不同的
????????23两点A、B.当OA?OB??,且满足???时,求△AOB面积S的取值范围.
34
图4
第 7 页 共 12 页
22.(本小题满分14分)
1?lnx已知函数f(x)?.
x1(Ⅰ)若函数在区间(a,a?)(其中a?0)上存在极值,求实数a的取值范围;
2k(Ⅱ)如果当x?1时,不等式f(x)?恒成立,求实数k的取值范围;
x?12n?2*(Ⅲ)求证:[(n?1)!]?(n?1)?e(n?N).
资阳市2008—2009学年度高中三年级第二次高考模拟考试
数学(理工农医类)试题参考答案及评分意见
一、选择题:本大题共12个小题,每小题5分,共60分. 1?5:DBADC; 6?10:BACDC; 11?12: BC.
二、填空题:本大题共4个小题,每小题4分,共16分.
3?m13.3; 14.?4; 15.1; 16.(,??).
2三、解答题:本大题共6个小题,共74分.解答要写出文字说明,证明过程或演算步骤.
17.解:(Ⅰ)∵l1∥l2,c?4,
3∴a2?b2?ab?c2, ··································································································3分
23∴a2?b2?c2?ab,
2a2?b2?c23∴cosC?························································································6分 ?. ·
2ab43(Ⅱ)∵a2?b2?ab?c2且c?2,
23∴ab?4?a2?b2?2ab,∴ab?8,当且仅当a?b?22时取"=". ·············8分 2∵cosC?∴S?ABC373,∴sinC?1?cos2C?1?()2?, ··············································10分
4441?absinC?7,当且仅当a?b?22时取"=". 2故△ABC面积取最大值为7. ··················································································12分
18.解:(Ⅰ)ξ=3表示取出的三个球中数字最大者为3.
131①三次取球均出现最大数字为3的概率P; ···········································1分 1?()?464第 8 页 共 12 页
相关推荐: