六年级上册数学易错题难题材料
一、培优题易错题
1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:
售出件数 7 6 3 5 4 5 售价(元) +2 +2 +1 0 ﹣1 ﹣2 请问,该服装店售完这30件连衣裙后,赚了多少钱?
【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为: (45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)] =13×30+[14+12+3+(-4)+(-10)] =390+15 =405(元),
即该服装店在售完这30件连衣裙后,赚了405元
【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.
2.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1. 小李从1楼出发,电梯上下楼层依次记录如下(单位:层): +5,–3,+10,–8,+12,–6,–10.
(1)请你通过计算说明小李最后是否回到出发点1楼;
(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?
【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0 所以小李最后回到出发点1楼.
(2)解:
54×2.8×0.1=15.12(度)
所以小李办事时电梯需要耗电15.12度.
【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;
(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m需要耗电0.1度利用乘法可得结果.
3.用火柴棒按下图中的方式搭图形.
(1)按图示规律填空: 图形符号 ① ② ③ ④ ⑤ 火柴棒根数 ________ ________ ________ ________ ________ (2)按照这种方式搭下去,搭第n个图形需要________根火柴? 【答案】(1)4;6;8;10;12 (2)2n+2
【解析】【解答】解:(1)填表如下: 图形符号 火柴棒根数 ① 4 ② 6 ③ 8 ④ 10 ⑤ 12 ( 2 )搭第n个图形需要(2n+2)根火柴. 【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;
(2)由(1)可得规律:2+2n.
4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)
(1)求收工时距A地多远?
(2)在第________次纪录时距A地最远。
(3)若每千米耗油0.3升,问共耗油多少升?
【答案】 (1)解:根据题意列式-4+7-9+8+6-5-2=1km. 答:收工时距A地1km,在A的东面
(2)五
(3)解:根据题意得检修小组走的路程为: |-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km) 41×0.3=12.3升.
答:检修小组工作一天需汽油12.3升
【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.
故答案为:五.
【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.
5.有两种溶液,甲溶液的酒精浓度为 的溶液的酒精浓度是盐浓度的3倍?
【答案】 解:假设把水都蒸发掉,则甲溶液盐占盐和酒精的:10%÷(15%+10%)=40%,乙溶液中盐占盐和酒精的:5%÷(45%+5%)=10%; 需要配的溶液盐占盐和酒精的:1÷(1+3)=25%; 则:(0.25-0.1):(0.4-0.25)=0.15:0.15=1:1,
1千克甲溶液中盐和酒精:1×(15%+10%)=0.25(千克),1千克乙溶液中盐和酒精:1×(5+45%)=0.5(千克)。
答:需要0.5千克乙溶液, 将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍。
【解析】【分析】 可以这样来看,将溶液中的水剔出或者说蒸发掉,那么所得到的溶液就是盐溶在酒精中。(事实上这种情况不符合物理规律,但这只是假设)。这样就能分别求出甲、乙溶液中盐占盐和酒精的百分之几。根据配制成溶液中酒精是盐的3倍先计算出配制后盐占盐和酒精的百分之几。分别求出1千克甲、乙溶液中盐和酒精的质量,然后确定需要加入的乙溶液的重量即可。
,盐浓度为
,乙溶液中的酒精浓度为
,
盐浓度为 .现在有甲溶液 千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得
6.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为 有清水
毫升;丙容器中有浓度为
的盐水
一半倒入乙容器搅匀后,再把乙容器中的盐水 【答案】 解:列表如下: 开始 第一次 甲 浓度 乙 溶液 浓度 溶液 的盐水
毫升;乙容器中 毫升倒入丙容
毫升.先把甲、丙两容器中的盐水各 毫升倒入甲容器,
器.这时甲、乙、丙容器中盐水的浓度各是多少?
第二次 丙 浓度 溶液 开始 第一次 第二次 答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。 【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤其是变化多次的,常用列表的方法,使它们之间的关系一目了然。浓度=盐的质量÷盐水质量×100%,盐的质量=盐水质量×浓度。
7.一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天。问这项工程由甲独做需要多少天?
【答案】 解:丙的工作效率是乙的:4÷2=2,
(天)
答:这项工程由甲单独做需要26天。
【解析】【分析】 丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.乙做13天,甲只要天,丙做13天,乙要26天,而甲只要天他们共同做13天的工作量。这样就可以把乙和丙工作13天的工作量都归结为甲工作的时间,然后求出甲单独完成需要的时间即可。
8.一件工作甲先做 小时,乙接着做
小时可以完成;甲先做 小时,乙接着做 小时
也可以完成.如果甲做 小时后由乙接着做,还需要多少小时完成? 【答案】 解:第一种情况乙独做:12-6=6(小时), 第二种情况甲独做:8-6=2(小时),
6÷2=3,甲1小时的工作量相当于乙3小时的工作量, 乙单独完成需要:6×3+12=30(小时), 30-3×3=21(小时)。 答:还需要21小时。
【解析】【分析】甲先做6小时,乙接着做12小时,相当于两队合做6小时,乙又独做6小时;甲先做8小时,乙接着做6小时,相当于两队合做6小时,甲又独做2小时。由于都完成了任务,所以乙做6小时的工作量相当于甲2小时的工作量,也就是乙做3小时的工作量相当于甲做1小时。这样把甲做的6小时代换成乙做18小时,再加上乙做的12小时就是乙单独完成需要的时间。甲先做3小时就相当于乙做9小时,这样用乙单独完成需要的时间减去9即可求出乙还需要做的时间。
相关推荐: