第一范文网 - 专业文章范例文档资料分享平台

混沌系统介绍及例子

来源:用户分享 时间:2025/11/1 8:03:24 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

专业学术讲座

报告

信计12-2 201211011060 凌雷 二零一五年六月二十二日

班级: 学号: 姓名:

目录

1. 混沌系统概念 2. 典型混沌系统介绍

3. 混沌金融系统的线性与非线性反馈同步 4. 混沌研究的发展方向及意义

一、混沌系统概念

混沌(chaos)是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。又称浑沌。英语词Chaos源于希腊语,原始 含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。作为科学术语,混沌一词特指一种运动形态。 动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。运动的可预测性是一个物理概念。一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。

混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。混沌可在相当广泛的一些确定性动力学系统中发生。混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。

二、典型混沌系统介绍

Lorenz系统

混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz方程组:

121 。

21213

3312

这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t,一般称作自治方程。式中x表示对流强度,y表示向上流和向下流在单位元之间的温度差,z表示垂直方向温度分布的非线性强度,-xz和xy为非线性项,b是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差

?x?10(x?x),??x?28x?x?xx,?x??8/3x?xx,?△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统(2-1)的主要控制参数。a?v是k普朗特数(v和k分别为分子粘性系数和热传导系数),c代表与对流纵横比有关的外形比,且a和c为无量纲常数。在参数范围为b?a?(a?c?3)a?c?1时,Lorenz系统

均处于混沌态。

在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为

[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所

示,二维吸引子如图2.3所示,图2.2所示分别为分量x、y随时间t的变化情况。

总体上,Lorenz吸引子由左右两个环套而成,每个环绕着一个不动点,它实际上是一条双螺旋的曲线,就像以十分灵巧的方式交织起来的一对蝴蝶的翅膀。这个吸引子中的环和螺线有无穷的深度,它们之间可以无限靠近,但永远不会相交,仅占据有限的空间,具有无穷嵌套的复杂结构。例如,随着时间的演化,每一个环都靠得很近的无穷多层,每层上都密密麻麻的排列着无穷多个螺线,它代表系统的相点在右侧转几圈后又跳到左侧转几圈,运动轨道无法预测什么时候从这一侧过渡到另一侧,并且它所

绕各自中心的方式和圈数也是个明显的随机数。这就是混沌状态。

三、混沌金融系统的线性与非线性反馈同步

自从1990年E.Ott等提出OGY混沌控制以及同年L.M.Pecora等提出完全同步以来,人们对混沌系统的认识更加深入.混沌同步用来实现两个系统的混沌态的完全重构,已经成为非线性科学理论及应用中的重要组成部分,是当前混沌理论研究和应用中的热点问题。目前,混沌同步已经广泛应用于激光物理、通信、化学反应、生物医学等领域.经济学中的混沌现象自1985年首次被发现以来,对当今西方主流经济学派产生了巨大的冲击,因为经济系统中出现混沌现象意味着宏观经济本身具有内在的不稳定性.根据混沌经济学家的观点,金融市场是一个复杂的经济系统,金融危机是这个系统产生的一种混沌现象,显然经济混沌控制就显得尤为重要.本研究考虑一类金融系统的混沌同步问题,首先利用非线性反馈控制实现了该金融系统的自同步,其次利用线性耦合的方法探讨了该系统的耦合自同步,得到了两种使该金融系统渐进同步的控制方法.数值仿真结果表明所给方法是有效的。

3.1、一类混沌金融系统的数学模型

模型建立了一个由生产子块、货币、证券子块和劳动力所组成的混沌金融系统: ﹒x=z+(y-a)x, ﹒y=1-by-x2, ﹒z=-x-cz,

其中x表示利率,y表示投资需求,z表示价格指数,a为储蓄量,b为投资成本,c为商品需求弹性.取参数a=0.9,b=0.2,c=1.2,初始条件为(2,1,2),利用Matlab软件得到系统(1)的三维相图见图1.

3.2、非线性反馈实现混沌金融系统的自同步控制 设驱动系统为(1),响应系统为 ﹒x1=z1+(y1-a)x1+u1, ﹒y1=1-by1-x21+u2, ﹒z1=-x1-cz1+u3,

其中U= (u1,u2,u3)T是非线性反馈控制器.设e1=x1-x,e2=y1-y,e3=z1-z,则误差系统为 ﹒e1=e3+y1e1+xe2-ae1+u1, ﹒e2=-be2-e1(x1+x)+u2, ﹒e3=-e1-ce2+u3,

选择非线性反馈控制器如下:

搜索更多关于: 混沌系统介绍及例子 的文档
混沌系统介绍及例子.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c81m2q6p4ve5zpal1bu66_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top