高三数学(理科)参考答案
一、选择题
1、A 2、D 3、C 4、C 5、B 6、A 7、D 8、C 9、D 10、C 11、A 12、D 二、填空题
3) 14.13.(0,三、解答题
42??1,e 15.②④ 16.??? 517.解:(1)当m=5,A=?x|4?x?6?B??x|?1?x?5?
?A?B??x|4?x?5?
(2)
AB?B?A?B
ⅰ)A??令?0,无解
ⅱ)A??A??x|m?1?x?m?1?
?m?1??1???0?m?4
m?1?5?18.(1)由题意,函数
f(x)?13??33?cos2x?sin?2x?? cos2x?sin2x?sin2x?sin2x?223?22?2???. 2所以f?x?的最小正周期为T?(2)令2k???2?2x??3?2k???2,k?Z,得k??5???x?k??,k?Z, 1212由x?[0,?],得f?x?在[0,?]上单调递增区间为?0,19.(1)
(2)由条件知
????7??,??. ,??1212????
所以
(f(x))2?444?f(x)??2f(x)??4. 而
f(x)(fx)(fx)当且仅当f(x)=所以m?4,
所以实数m的最大值为4.
4,即f(x)=2,x=0时取得最小值. f(x)a2?b2?c2a2?b2?22ab120.解:(1)由余弦定理,得cosC?? ??,
2ab2ab2ab2又C??0,??,所以C?22?3.
(2)由sinB?sinA?sinC?2sin2A?sinC?, 得sin2B?sin2C?sin2A?2sin2AsinC, 得sin2B?sin2C?sin2A?4sinAcosAsinC,
b2?c2?a2再由正弦定理得b?c?a?4accosA,所以cosA?.①
4ac222b2?c2?a2又由余弦定理,得cosA?,②
2bcb2?c2?a2b2?c2?a2由①②,得,得4ac?2bc,得2a?b, ?4bc2bc?a2?b2?4?ab4323联立?,得a?,b?.
b?2a33?所以b2?a2?c2.所以B?所以ABC的面积S??2.
112323. ac???2?2233fx)?log()?log()21.解:(1)根据题意,函数(, a1?2xa1?2x?1?2x?011则有?,解可得??x?,
22?1?2x?0fx)即函数(的定义域为???11?,?; 22??fx)?log()?log()(2)首先,定义域关于原点对称,函数(, a1?2xa1?2xf?x)?log()?log()??[log(?log(]??(fx)则( a1?2xa1?2xa1?2x)a1?2x)fx)则函数(为奇函数,
)?log()>0即log()>log()(3)根据题意,log(, a1?2xa1?2xa1?2xa1?2x?1?2x?01??1?1?2x?00<x<当a>时,有,解可得,此时不等式的解集为1??0,?;
2?2??1?2x?1?2x??1?2x>011?(?,0)当0<a<,解可得??x?0,此时不等式的解集为; 1时,有?1?2x>022?1?2x<1?2x?故当a>1时,不等式的解集为?0,?;
??1?2?(?,0)当0<a<. 1时,不等式的解集为
22.(1)当a??4时,f?x??x?4ln?x?1?,定义域为??1,???,
2122?x2?x?2?4,令f??x??0,得x?1或x??2(舍去). f??x??2x??x?1x?1列表如下:
x ??1,1? ? 1 0 ?1,??? ? f??x? f?x?
极小 因此,函数y?f?x?的单调减区间为??1,1?,单调增区间为?1,???,极小值点为x?1; (2)
g?x??f?x??22?2x?1?x2?2x?1?aln?x?1??, x?1x?1?g??x??2?x?1??a2?, x?1?x?1?2由题意知,不等式g??x??0对任意的x??0,???恒成立,得a?22?2?x?1?, x?1222?hx???4?x?1??0,?2?x?1?,其中x??0,???,则??构造函数h?x?? 2x?1??x?1所有,函数h?x??22?2?x?1?在?0,???上为减函数,则h?x?max?h?0??0, x?1?a?0,因此,实数a的取值范围是?0,???.
相关推荐: