第一范文网 - 专业文章范例文档资料分享平台

中英文文献检索报告《BMED在废水处理中的应用》

来源:用户分享 时间:2025/5/31 3:43:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

5. Venugopal, K.; Dharmalingam, S., Utilization of Bipolar Membrane Electrodialysis for Salt Water Treatment. Water Environment Research 2013,85, (7), 663-670. 三、

文献分析(摘要翻译)

1. Eisaman, M. D.; Alvarado, L.; Larner, D.; Wang, P.; Garg, B.; Littau, K. A., CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science 2011, 4, (4), 1319-1328. Abstract: Caustic solvents such as sodium or potassium hydroxides, converted via CO2 capture to aqueous carbonates or bicarbonates, are a likely candidate for atmospheric CO2 separation. We have performed a comprehensive experimental investigation of CO2 gas regeneration from aqueous potassium carbonate and bicarbonate solutions using bipolar membrane electrodialysis (BPMED). This system allows the regeneration of pure CO2 gas, suitable for subsequent sequestration or reaction to synthetic hydrocarbons and their products, from aqueous carbonate/bicarbonate solutions. Our results indicate that the energy consumption required to regenerate CO2 gas from aqueous bicarbonate (carbonate) solutions using this method can be as low as 100 kJ (200 kJ) per mol of CO2 in the small-current-density limit. 摘要: 像氢氧化钾和氢氧化钠这样的腐蚀性的化学溶剂,能够吸收二氧化碳,转变成为水溶液中的碳酸根离子和碳酸氢根离子,这是一种很好的分离大气中二氧化碳的办法。我们做了一个利用碳酸钾溶液和碳酸氢钾溶液的双极膜电渗析法重建二氧化碳气体的综合性的实验研究。

2. Ghyselbrecht, K.; Silva, A.; Van der Bruggen, B.; Boussu, K.; Meesschaert, B.; Pinoy, L., Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. Journal of Environmental Management 2014, 140, 69-75. Abstract: The industrial implementation of alternative technologies in the processing of saline effluent streams is a topic of growing importance. In this technical feasibility study, the desalination of an industrial saline stream containing about 75 g L-1 NaCl contaminated with some organic matter using bipolar membrane electrodialysis (EDBM) was investigated on lab-scale. Bipolar membranes of two different manufacturers (PCA - PolymerChemieAltmeier GmbH and FuMA-Tech GmbH) were tested and compared in terms of electrical resistance, current efficiency and purity of the produced acid and base stream. In both cases, almost complete desalination (>99%) was achieved and simultaneously HCl and NaOH were produced with a concentration between 1.5 and 2 M with a relatively good purity. The Fumasep bipolar membranes scored slightly better for electrical resistance and current efficiency. On the other hand, slightly higher current densities were achieved with PCA bipolar membranes. Simultaneously, some information was obtained on the transport behavior of the organic matter present in the saline stream. It was observed that a transport competition occurred between the organic matter and the accompanying chlorides. From this lab-scale study it was concluded that EDBM is a promising and attractive technology in the area of saline effluent reclamation and reuse. (C) 2014 Elsevier Ltd. All rights reserved. 摘要:

3. Shen, J. N.; Huang, J.; Liu, L. F.; Ye, W. Y.; Lin, J. Y.; Van der Bruggen, B., The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge. Journal of Hazardous Materials 2013, 260, 660-667. Abstract: Conventional methods of tetrapropyl ammonium hydroxide (TPAOH) production via electrolysis, reaction of tetrapropyl ammonium halide with silver oxide, and ion-exchange suffer from high production costs, low quality, and environmental pollution. In this work, continuous bipolar membrane electrodialysis (BMED) is employed for the preparation of TPAOH from its halide as a sustainable alternative process. Novel ion-exchange membranes were developed for lab and pilot scale experiments, which indicate an acceptable current efficiency and energy consumption. The results indicate that a cell configuration with four compartments yielded the best results when the salt concentration was 0.3 mol L-1 and the current density was 200 A m(-2). The highest conversion in electrodialysis was 91.6%, with a high purity of trace alkali metal ions and low Br- content (176 ppm) at a TPAOH concentration of 25%. The energy consumption is 1.897 kW h kg(-1). Continuous pilot experiments demonstrate the feasibility of manufacturing TPAOH by direct splitting its halide for industrial application. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. 摘要:

4. Shen, J. N.; Yu, J.; Huang, J.; Van der Bruggen, B., Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis. Chemical Engineering Journal 2013, 220, 311-319. Abstract: Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L-1 is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. (C) 2013 Elsevier B.V. All rights reserved. 摘要:

5. Venugopal, K.; Dharmalingam, S., Utilization of Bipolar Membrane Electrodialysis for Salt Water Treatment. Water Environment Research 2013, 85, (7), 663-670. Abstract: Bipolar ion-exchange membranes, using polystyrene ethylene utylenes polystyrene (PSEBS) with polyvinyl alcohol as the intermediate, were fabricated and evaluated for their potential to remove secondary salts from lab-prepared salt solutions. Experiments were carried out in batch re-circulation mode. The mechanical properties and microscopic images of the membranes were analyzed before, during, and after the electrodialysis process. The performance of the membranes in the stack was evaluated in terms of energy consumption and current efficiency, and found to be 1.07 Wh/mol and 0.67, respectively. Commercially-produced membranes were used as a comparison to the PSEBS-based membranes. In the case of the commercial membrane, polystyrene divinylbenzene, the values for the above parameters were observed to be 2.59 Wh/mol and 0.63, respectively. In addition, other parameters, such as transport number of ions and acid - alkali production, were evaluated for both PSEBS-based and commercially-produced membranes. Results indicated that PSEBS-based membranes exhibited better performance than the commercial membranes. 摘要:

中英文文献检索报告《BMED在废水处理中的应用》.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c82ttm6iijp1jxut0i37i_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top