比例线段/黄金分割/相似三角形
【知识要点】
一、比例线段的性质:
aac的值叫做线段a,b的比,若?,则称线段a,b,c,d成比例线段。 bbdac2.??a:b?c:d?ad?bc,其中a,b,c,d分别叫第一、第二、第三、第四比例
bd1.把
项,a,d称为外项,b,c称为内项;外项的积等于内项的积。
3.
图上距离1?,我们称为比例尺,进行有关比例尺的计算时,要注意统一单位
实际距离nacacbd??ad?bc;②反比性质:???; bdbdacacabaca?bc?b? ③更比性质:???; ④合比性质:??;
bdbdbdca4.比例性质:①基本性质: ⑤等比性质:
aa?a2??ana1a2a3a????n,则1?1 b1b2b3bnb1?b2???bnb15.比例中项:若b?ac,则称b是ac的比例中项
二、黄金分割:
6.若点P分线段AB得到较长线段是较短线段和整条线段的比例中项,则称点P是线段AB的黄金分割点; 7.
2较长线段较短线段5?15?1叫做黄金比值。 ??,整条线段较长线段22四.三角形一边平行线的性质定理:
平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 三角形一边的平行线性质定理的推论:
平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.
五.三角形一边平行线的判定定理:
如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。
三角形一边的平行线判定定理的推论:
如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对 应线段成比例,那么这条直线平行于三角形的第三边。 六.平行线分线段成比例定理 :
两条直线被三条平行的直线所截,截得的对应线段成比例。 推论:
1
两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条 直线上截得的线段也相等。 七.三角形的重心:
定义:三角形重心是三角形三边中线的交点。
性质:重心到顶点的距离与重心到对边中点的距离之比为2:1。 八. 相似三角形的判定:
①两角对应相等,两个三角形相似
②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似
④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似
⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 九、 相似三角形的性质
①相似三角形的对应角相等 ②相似三角形的对应边成比例
③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比
⑤相似三角形面积的比等于相似比的平方 经典例题:
例1:若a?c?e?2,求a?c,2a?3c?4e
b?d2b?3d?4fbdf5
y+zz+xx+y
例2: = = =k,求k的值
xyz
例3:已知: 例5:若
a?2bc?5??,且2a?b?3c346aca?cc?ee===3(且有b+d≠0,d+f≠0),求证:==3. bdb?dd?ff?21 ,试求a:b:c
例6:已知点C是线段AB的黄金分割点AC=2,且AC>BC,求线段AB与BC的长
2
例7:若?ABC三边a:b:c?6:4:3,三边上的高分别为h1、h2、h3,求h1:h2:h3的值。
例8:如图 4-85. AB⊥于l. CD⊥l于 C,E为 AD中点.求证:△EBC是等腰三角形.
例9:如图4-86,CB⊥AB,DA⊥AB,M为CD中点.求证:∠MAB=∠MBA.
AB例10:如图已知BE=
AMMEAC=CE。
AB?BC?CAAEBC求证:=ME
例11:如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于G,求证GF=FB.
3
例12:如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC的重心,GE⊥AC于点E,若BC=6cm,则GE= cm。
例13:在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。
例14:如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,
BP?1,CD?
2,求△ABC的边长 3
例15:已知:如图,梯形ABCD中,AD∥BC,AC、BD交于点O,EF经过点O且和两底
平行,交AB于E,交CD于F,求证:OE=OF
例16:已知:如图,△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,
求证:
AEAC? AFAB4
相关推荐: