Ò»´Îº¯ÊýÓë¶þ´Î¸ùʽϰÌâ
1£®ÒÑÖªyÓëx+3³ÉÕý±ÈÀý£¬²¢ÇÒx=1ʱ£¬y=8£¬ÄÇôyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½Îª£¨ £© £¨A£©y=8x £¨B£©y=2x+6 £¨C£©y=8x+6 £¨D£©y=5x+3 2£®ÈôÖ±Ïßy=kx+b¾¹ýÒ»¡¢¶þ¡¢ËÄÏóÏÞ£¬ÔòÖ±Ïßy=bx+k²»¾¹ý£¨ £© £¨A£©Ò»ÏóÏÞ £¨B£©¶þÏóÏÞ £¨C£©ÈýÏóÏÞ £¨D£©ËÄÏóÏÞ 3£®Ö±Ïßy=-2x+4ÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýÊÇ£¨ £© £¨A£©4 £¨B£©6 £¨C£©8 £¨D£©16 4£®Èô¼×¡¢ÒÒÁ½µ¯»ÉµÄ³¤¶Èy£¨cm£©ÓëËù¹ÒÎïÌåÖÊÁ¿x£¨kg£©Ö®¼äµÄº¯Êý½âÎöʽ·Ö±ðΪy=k1x+a1ºÍy=k2x+a2£¬Èçͼ£¬Ëù¹ÒÎïÌåÖÊÁ¿¾ùΪ2kgʱ£¬¼×µ¯»É³¤Îªy1£¬ÒÒµ¯»É³¤Îªy2£¬Ôòy1Óëy2µÄ´óС¹ØÏµÎª£¨ £© £¨A£©y1>y2 £¨B£©y1=y2 £¨C£©y1 5£®Éèb>a£¬½«Ò»´Îº¯Êýy=bx+aÓëy=ax+bµÄͼÏó»ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÄÚ£¬?ÔòÓÐÒ»×éa£¬bµÄȡֵ£¬Ê¹µÃÏÂÁÐ4¸öͼÖеÄÒ»¸öΪÕýÈ·µÄÊÇ£¨ £© 7£®Ò»´Îº¯Êýy=kx+2¾¹ýµã£¨1£¬1£©£¬ÄÇôÕâ¸öÒ»´Îº¯Êý£¨ £© £¨A£©yËæxµÄÔö´ó¶øÔö´ó £¨B£©yËæxµÄÔö´ó¶ø¼õС £¨C£©Í¼Ïñ¾¹ýԵ㠣¨D£©Í¼Ïñ²»¾¹ýµÚ¶þÏóÏÞ 8£®ÎÞÂÛmΪºÎʵÊý£¬Ö±Ïßy=x+2mÓëy=-x+4µÄ½»µã²»¿ÉÄÜÔÚ£¨ £© £¨A£©µÚÒ»ÏóÏÞ £¨B£©µÚ¶þÏóÏÞ £¨C£©µÚÈýÏóÏÞ £¨D£©µÚËÄÏóÏÞ 9£®ÒªµÃµ½y=- 33x-4µÄͼÏñ£¬¿É°ÑÖ±Ïßy=-x£¨ £©£® 22 £¨A£©Ïò×óÆ½ÒÆ4¸öµ¥Î» £¨B£©ÏòÓÒÆ½ÒÆ4¸öµ¥Î» £¨C£©ÏòÉÏÆ½ÒÆ4¸öµ¥Î» £¨D£©ÏòÏÂÆ½ÒÆ4¸öµ¥Î» 10£®Èôº¯Êýy=£¨m-5£©x+£¨4m+1£©x2£¨mΪ³£Êý£©ÖеÄyÓëx³ÉÕý±ÈÀý£¬ÔòmµÄֵΪ£¨ £© £¨A£©m>- 11 £¨B£©m>5 £¨C£©m=- £¨D£©m=5 44 11£®ÈôÖ±Ïßy=3x-1Óëy=x-kµÄ½»µãÔÚµÚËÄÏóÏÞ£¬ÔòkµÄȡֵ·¶Î§ÊÇ£¨ £©£® £¨A£©k< 111 £¨B£© £¨ £© £¨A£©4Ìõ £¨B£©3Ìõ £¨C£©2Ìõ £¨D£©1Ìõ 13£®ÒÑÖªabc¡Ù0£¬¶øÇÒ a?bb?cc?a??=p£¬ÄÇôֱÏßy=px+pÒ»¶¨Í¨¹ý£¨ £© cab £¨A£©µÚÒ»¡¢¶þÏóÏÞ £¨B£©µÚ¶þ¡¢ÈýÏóÏÞ £¨C£©µÚÈý¡¢ËÄÏóÏÞ £¨D£©µÚÒ»¡¢ËÄÏóÏÞ
Ïà¹ØÍÆ¼ö£º